November 2020

Mississippi River –Sartell Watershed Restoration and Protection Strategy Report

Authors

Kaitlyn Taylor, Tetra Tech Jennifer Olson, Tetra Tech Ryan Birkemeier, Tetra Tech Phil Votruba, MPCA

Contributors/acknowledgements

Amanda Guertin, Gerry Maciej, Chuck Rau – Benton Soil and Water Conservation District

Melissa Barrick, Shiela Carlton – Crow Wing Soil and Water Conservation District

Mary Degiovanni, Ashley Kaisershot – City of Sartell

Noah Czech, Lisa Vollbrecht - City of St. Cloud

Lance Chisholm, LeaAnn Nouis, Shannon Wettstein – Morrison Soil and Water Conservation District

Galen Gruber, Addison March – Morrison County Environmental Services

Cole Loewen – Stearns County Environmental Services

Greg Berg, Dennis Fuchs, Ben Ruley – Stearns Soil and Water Conservation District

Jason Weinerman, Brad Wozney – Minnesota Board of Water and Soil Resources Eric, Altena, Lucas Borgstrom, Nicola Blake-Bradley, Jason Carlson, David Depaz, Mark Hauck, Reid Northwick, Nick Proulx – **Minnesota Department of Natural Resources**

Dereck Richter, Karen Voz – Minnesota Department of Health

Chad Anderson, Jordan Donatell, Rhonda Adkins, Sagor Biswas, Nicole Blasing, Anthony Dingmann, Chuck Johnson, Andrew Frank, Kourtney Frank, Andrea Plevan, Paul Schrieber – **Minnesota Pollution Control Agency**

Tim Terrill – Mississippi Headwaters Board

Kristen Blann, Leah Hall, Todd Holman – **The Nature Conservancy**

Bob Guggenberger – Two Rivers Lake Association

Nicole Ellingson, Steve Karel – United States Fish and Wildlife Service

Local Partner Team Participants

Editing and graphic design

PIO staff – Stephen Mikkleson Administrative Staff – Jinny Fricke, Celine Lyman

Cover photo credit: Kaitlyn Taylor, Tetra Tech and Big Watab Lake Association (Big Watab Lake – Stearns County)

The MPCA is reducing printing and mailing costs by using the Internet to distribute reports and information to wider audience. Visit our website for more information.

The MPCA reports are printed on 100% post-consumer recycled content paper manufactured without chlorine or chlorine derivatives.

Contents

1.	Wa	atershed background and description1
2.	Wa	atershed conditions
	2.1.	Condition status5
	2.2.	Water quality trends
	2.3.	Stressors and sources27
	2.4.	TMDL summary43
	2.5.	Protection considerations45
3.	Pri	oritizing and implementing restoration and protection57
	3.1.	Civic engagement
	3.2.	Targeting of geographic areas64
	3.3.	Restoration and protection strategies72
	3.4.	Climate protection co-benefit of strategies134
4.	Мо	onitoring plan
5.	Re	ferences and further information138
6.	Ар	pendices

Figures

Figure 1. Land cover in the MRSW (Cropland Data Layer 2018)	
Figure 2. Impaired waters in the MRSW.	
Figure 3. WPLMN sampling locations.	
Figure 4. TSS, TP, and NO ₃ +NO ₂ -N flow weighted mean concentrations and loads for the Mississippi Riv at Royalton, Minnesota, 2007-2016 (Figure 31 in the monitoring and assessment report, MPCA 2019a)	
	. 15
Figure 5. TSS, TP, and NO3+NO2-N flow weighted mean concentrations and loads for the Mississippi River at Sartell, Minnesota, 2007-2016 (Figure 32 in the monitoring and assessment report, MPCA	
2019a)	. 16
Figure 6. 2007-2016 Average annual TSS, TP, and NO3-NO2-N flow weighted mean concentrations by	
major watershed (Figure 30 in the monitoring and assessment report, MPCA 2019a)	. 17
Figure 7. Little Rock Lake Watershed monitoring stations.	
Figure 8. Little Rock Lake watershed BMPs (Image from Benton SWCD)	. 20
Figure 9. Nitrate concentrations in Little Rock Lake watershed, 2006–2008 vs. 2016–2018	.21
Figure 10. Mean annual flows monitored at Little Rock Creek near Rice (H15029001), 1998–2018, with	۱
the pre-implementation (2006–2008) and post-implementation (2016–2018) periods highlighted	.21
Figure 11. Total Kjeldahl nitrogen concentrations in Little Rock Lake watershed, 2006–2008 vs. 2016–	
2018	. 22
Figure 12. Total phosphorus concentrations (June–September) in Little Rock Lake Watershed, 2006–	
2008 vs. 2016–2018.	
Figure 13. Total suspended solids (April–September) in Little Rock Lake Watershed, 2006–2008 vs. 201 2018.	
Figure 14. Biochemical oxygen demand (June–September) in Little Rock Lake Watershed, 2006–2008 v	
2016–2018	
Figure 15. Little Rock Lake Secchi depth (June–September); site 05-0013-00-204	
Figure 16. Little Rock Lake total phosphorus surface concentrations (June–September); site 05-0013-0	
204.	
Figure 17. Little Rock Lake chlorophyll- <i>a</i> surface concentrations (June–September); site 05-0013-00-20	
······	
Figure 18. Stream AUIDs assessed in the MRSW Stressor Identification Report.	
Figure 19. Sources of phosphorus in the MRSW (Tetra Tech 2018).	
Figure 20. Upland loading rates of TP (lb/ac/yr) by HSPF model catchment.	
Figure 21. Sources of sediment in the MRSW (Tetra Tech 2018).	
Figure 22. Upland loading rates of TSS (tons/ac/yr) by HSPF model catchment	
Figure 23. Sources of Nitrogen in the MRSW (Tetra Tech 2018).	
Figure 24. TN yield (lb/ac/yr) by HSPF model catchment.	
Figure 25. Primary livestock types in the MRSW.	
Figure 26. Phosphorus loading (kilograms) from WWTF in the MRSW 2000 to 2019 (MPCA Healthier	
Watersheds)	.42
Figure 27. TSS loading kilograms) from WWTF in the MRSW 2000 to 2019 (MPCA Healthier watershed	
Figure 28. Protection priority waterbodies identified in the MRSW.	
Figure 29. Drinking water supply management areas (DWSMA) for surface water sources.	
Figure 30. DWSMA vulnerability (MDH).	
Figure 31. Water withdrawals by type within the MRSW (MPARS 2016)	
Figure 32. Active status permitted high capacity withdrawals in 2016 (Figure from MPCA 2019a)	
Figure 33. Total annual groundwater withdrawal in the MRSW (1997-2016) (Figure from MPCA 2019a)	

Figure 34. Little Rock Creek Area (Image from Minnesota DNR)	55
Figure 35. Pollution sensitivity of near surface materials (Image from MPCA 2019a).	56
Figure 36. Targeted geographic area: HSPF subwatersheds with high TP, TSS, and TN upland loading	
rates in the MRSW.	66
Figure 37. Targeted geographic area: High quality and nearly/barely macroinvertebrate biological	
communities in the MRSW.	67
Figure 38. Targeted geographic area: High quality and at-risk fish biological communities in the MRSW.	
Figure 39. Targeted geographic area: Areas of concern identified by local partner team members in the	:
MRSW	69
Figure 40. Targeted geographic area: Areas marked as important land and water resources during the	
February 2020 public meetings, northeastern portion of watershed.	70
Figure 41. Targeted geographic area: Areas marked as important land and water resources during the	
February 2020 public meetings, southwestern portion of watershed	
Figure 42. Little Rock Lake Subwatershed (0701020105). See Table 15 for corresponding restoration an	d
protection strategies	79
Figure 43. Two Rivers Subwatershed (0701020101). See Table 16 for corresponding restoration and	
protection strategies	85
Figure 44. Spunk Creek Subwatershed (0701020102). See Table 17 for corresponding restoration and	
protection strategies	96
Figure 45. Skunk River Subwatershed (0701020103). See Table 18 for corresponding restoration and	
protection strategies1	01
Figure 46. Platte River Subwatershed (0701020104). See Table 19 for corresponding restoration and	
protection strategies1	07
Figure 47. Watab River Subwatershed (0701020106). See Table 20 for corresponding restoration and	
protection strategies1	19
Figure 48. City of Sartell Subwatershed (0701020107). See Table 21 for corresponding restoration and	
protection strategies1	26
Figure 49. Station #1: Where in the watershed? Northeastern portion of the watershed. Attendees we	re
asked to place a star on the map marking their home. Note, yellow arrows were added later to better	
show location of stars14	45
Figure 50. Station #1: Where in the watershed? Southwestern portion of the watershed. Attendees we	re
asked to place a star on the map marking their home. Note, yellow arrows were added later to better	
show location of stars14	46
Figure 51. Results from Station #2: Love your watershed—northwestern portion of the watershed.	
Attendees were asked to mark a heart sticker on natural areas within the watershed that they care	
about14	47
Figure 52. Results from Station #2: Love your watershed—southwestern portion of the watershed.	
Attendees were asked to mark a heart sticker on natural areas within the watershed that they care	
about14	48
Figure 53. Written results from Station #2: Love your watershed sheet 1. Attendees were given the	
option to write down why the location they chose was important to them14	49
Figure 54. Written results from Station #2: Love your watershed sheet 2. Attendees were given the	
option to write down why the location they chose was important to them1	50

Tables

Table 1. Land cover (Cropland Data Layer 2018).	1
Table 2. Assessment status of stream reaches in the MRSW	6
Table 3. Assessment status of lakes in the MRSW	11
Table 4. Long-term water clarity trends in the MRSW. Information provided by MPCA 2019a	13
Table 5. WPLMN sites in the MRSW	
Table 6. Summary of pre- and post-implementation stream water quality trend evaluation.	27
Table 7. Summary of aquatic life impairments and stressors in the MRSW (Table 1 of stressor	
identification report, MPCA 2019b)	28
Table 8. Point sources (NPDES or SDS permitted) in the MRSW.	40
Table 9. Summary of TMDLs within the MRSW	44
Table 10. Priority streams for protection as identified in the statewide interagency effort	46
Table 11. Priority lakes for protection as identified in statewide interagency effort	46
Table 12. Priority sources in the Source Water Protection Plan for the City of St. Cloud, Minnesota	49
Table 13. Priority waterbodies for Streams County as determined by SWCD and County staff	65
Table 14. Watershed wide strategy types (in alphabetical order) and example BMPs for the MRSW	72
Table 15. Restoration and protection strategies for the Little Rock Creek Subwatershed (0701020105)). 80
Table 16. Restoration and protection strategies for the Two River Subwatershed (0701020101)	86
Table 17. Restoration and protection strategies for the Spunk Creek Subwatershed (0701020102)	97
Table 18. Restoration and protection strategies for the Skunk River Subwatershed (0701020103)	102
Table 19. Restoration and protection strategies for the Platte River Subwatershed (0701020104)	108
Table 20. Restoration and Protection Strategies for the Watab River Subwatershed (0701020106)	120
Table 21. Restoration and protection strategies for the City of Sartell–Mississippi River Subwatershed	
(0701020107)	127
Table 22. Issue and Concerns Survey results from February 2020 Public meeting and local partner tea	m
members. Surveyed were asked to select their top three issues and/or concerns in the Mississippi Riv	'er–
Sartell Watershed.	151

Key terms and abbreviations

Assessment Unit Identifier (AUID): The unique waterbody identifier for each river reach comprised of the U.S. Geological Survey (USGS) eight-digit HUC plus a three-character code unique within each HUC.

Aquatic life impairment: The presence and vitality of aquatic life is indicative of the overall water quality of a stream. A stream is considered impaired for impacts to aquatic life if the fish Index of Biotic Integrity (IBI), macroinvertebrate IBI, dissolved oxygen, turbidity, or certain chemical standards are not met.

Aquatic recreation impairment: Streams are considered impaired for impacts to aquatic recreation if fecal bacteria standards are not met. Lakes are considered impaired for impacts to aquatic recreation if total phosphorus and either chlorophyll-a or Secchi disc depth standards are not met.

Hydrologic Unit Code (HUC): A HUC is assigned by the USGS for each watershed. HUCs are organized in a nested hierarchy by size. For example, the Upper Mississippi River Basin is assigned a HUC-4 of 0701 and the Mississippi River–Sartell watershed is assigned a HUC-8 of 07010201.

Impairment: Waterbodies are listed as impaired if water quality standards are not met for designated uses including aquatic life, aquatic recreation, and aquatic consumption.

Index of Biotic Integrity (IBI): A method for describing water quality using characteristics of aquatic communities, such as the types of fish and invertebrates found in the waterbody. It is expressed as a numerical value between 0 (lowest quality) to 100 (highest quality).

Protection: This term is used to characterize actions taken in watersheds of waters not known to be impaired to maintain conditions and beneficial uses of the waterbodies.

Restoration: This term is used to characterize actions taken in watersheds of impaired waters to improve conditions, eventually to meet water quality standards and achieve beneficial uses of the waterbodies.

Source (or pollutant source): This term is distinguished from 'stressor' to mean only those actions, places or entities that deliver/discharge pollutants (e.g., sediment, phosphorus, nitrogen, pathogens).

Stressor (or biological stressor): This is a broad term that includes both pollutant sources and nonpollutant sources or factors (e.g., altered hydrology, dams preventing fish passage) that adversely impact aquatic life.

Total Maximum Daily Load (TMDL): A calculation of the maximum amount of a pollutant that may be introduced into a surface water and still ensure that applicable water quality standards for that water are met. A TMDL is the sum of the wasteload allocation for point sources, a load allocation for nonpoint sources and natural background, an allocation for future growth (i.e., reserve capacity), and a margin of safety as defined in the Code of Federal Regulations.

Acronyms and abbreviations

,,	
1W1P	One Watershed, One Plan
AFO	animal feeding operation
AUID	assessment unit identification
BOD	biological oxygen demand
BMP	best management practice
BWSR	Board of Water and Soil Resources
CCA	certified crop advisor
CDL	Cropland data layer
DO	dissolved oxygen
DNR	Minnesota Department of Natural Resources
DWSMA	drinking water supply management area
EQuIS	environmental quality information system
EPA	U.S. Environmental Protection Agency
FWMC	flow weighted mean concentration
GRAPS	groundwater restoration and protection strategy
HSPF	Hydrological Simulation Program FORTRAN
HUC	hydrologic unit code
IBI	index of biotic integrity
IWM	intensive watershed monitoring
Lb/ac/yr	pounds per acre per year
LID	low impact development
mg/L	milligram per liter
μ/L	microgram per liter
MDA	Minnesota Department of Agriculture
MDH	Minnesota Department of Health
MPCA	Minnesota Pollution Control Agency
MRSW	Mississippi River–Sartell Watershed
MS4	municipal separate storm sewer system
NO ₃ +NO ₂ -N	nitrate plus nitrite nitrogen
NPDES	national pollutant discharge elimination

SDS	state disposal system
SID	stressor identification
SSTS	subsurface sewage treatment system
SWCD	soil and water conservation district
TKN	total Kjeldahl nitrogen
TMDL	total maximum daily load
ТР	total phosphorus
TSS	total suspended solids
WPLMN	Watershed Pollutant Load Monitoring Network
WRAPS	watershed restoration and protection strategy
WWTP	wastewater treatment plan
WWTF	wastewater treatment facility

Executive summary

The Mississippi River – Sartell Watershed (MRSW) is located in central Minnesota as part of the Upper Mississippi River Basin and spans approximately 1,020 square miles. The watershed is composed of portions of Morrison, Benton, and Stearns counties and also contains smaller sections of Crow Wing, Mille Lacs, and Todd counties. The MRSW consists of 879 total river miles, and includes 43 named stream assessment units. There are 232 lakes within the watershed covering a total of 13,319 acres.

The MRSW lies within the southern portion of the Northern Lakes and Forests ecoregion, which is dominated by nutrient-poor glacial soils, extensive sandy outwash plains, and broad lacustrine basins, and the northern portion of the North Central Hardwood Forests ecoregion, which is comprised of mainly rolling glacial till plains, lacustrine basins, outwash plains, and rolling moraines. The sand plain regions located along the Mississippi River are some of the most intensively cultivated lands within the watershed. The high infiltration rates of the soils within the sand plain regions result in groundwater that is highly sensitive to pollution from surface sources. The diverse surface water resources within this watershed provide important recreational opportunities and economic benefits to citizens and visitors.

Land use is predominantly agricultural (corn, soybean, and alfalfa crops), followed by forested, grassland and pasture, and wetlands. Agricultural land is highly irrigated in the MRSW, with several high capacity wells located in the central portion of the watershed. Areas of forests and wetlands are clustered in the northern portion of the watershed in Crow Wing County and the northeast corner of Morrison County. Forest and wetlands are also found clustered around lakes and in the headwaters of streams. Only 6% of the watershed is developed for urban uses. Major developed areas include the cities of Sartell, Rice, Royalton, Pierz, Avon, and Albany. The City of Saint Cloud is located downstream of the watershed along the Mississippi River. The Mississippi River serves as the sole drinking water supply for the city of St. Cloud and is a major drinking water supply for the Twin Cities Metro Area.

The Mississippi River is the main body of water in the MRSW. Bisecting the watershed, the Mississippi River enters the watershed in Morrison County and flows south through the center of the MRSW as it receives water from several tributaries. The majority of these tributaries are characterized by flowing streams with riffle habitat. The main stem Mississippi River experiences one of its largest changes in topography in the state of Minnesota as it flows through the MRSW, dropping six and a half feet per river mile. Lakes are predominantly located in the northeastern and southwestern portions of the watershed.

Water quality conditions of the MRSW are important to the downstream receiving waters and drinking water supplies for Saint Cloud and the Twin Cities. Several of the waterbodies within the MRSW are not meeting water quality standards and are impaired. Despite these impairments, several streams and lakes are demonstrating improving trends in water clarity in the watershed.

Beginning in 2016, the MPCA undertook an intensive watershed monitoring (IWM) effort of the surface waters in the MRSW. Overall the biological communities found

Mississippi River, Morrison County – River Mile 955 (photo courtesy of DNR).

throughout the watershed are in fair to good condition. However, of the 50 stream reaches evaluated for aquatic recreation and/or aquatic life within the MRSW:

- Sixteen of those reaches are not meeting water quality standards for aquatic life use due to
 pollutants including phosphorus, nitrate, and dissolved oxygen (DO), or nonpollutant stressors
 including issues related to longitudinal connective, temperature, habitat, and streamflow
 alteration.
- Twenty-four reaches are not meeting the aquatic recreational use standard due to *E. coli* or Fecal Coliform. The Platte River (07010201-545) supports the only exceptional biological community in the MRSW with several sensitive fish and macroinvertebrate species present.

Fifty-one lakes were evaluated for aquatic recreation and 17 for aquatic life within the MRSW. Three of those lakes were found not to meet the aquatic recreational use standard due to phosphorus or nutrients, and two were found not to meet the aquatic life use standard for unknown stressors. Numerous lakes do not have sufficient data at this time to make a formal assessment for these uses. Overall, where long-term water quality information is available, increasing water quality clarity trends are found in 10 lakes and three streams with decreasing trends noticed in four lakes.

Total maximum daily load (TMDL) studies were developed concurrently to the MRS WRAPS effort for 15 *E. coli* impaired stream segments and two phosphorus impaired lakes, Two Rivers Lake and Platte Lake. These studies identify known and likely sources of the pollutants and reductions needed to bring these waterbodies back into compliance with state standards. Previous TMDLs were developed for Little Rock Lake for nutrients in 2012, the Upper Mississippi River for bacteria, and Little Rock Creek for DO, nitrate, temperature, and fish bioassessment impairments.

To assess the causes of aquatic life impairments in the assessed streams, a stressor identification (SID) study was completed by the MPCA in 2019. The study noted potential stressors found throughout the MRSW: habitat degradation due to livestock access to the stream and riparian corridors; stressful riparian land uses (i.e. uses causing erosion); and dams and improperly installed culverts, which can

create a loss of stream connectivity. The study recommends that wherever possible, work should be done cooperatively with landowners to reduce livestock access to streams and/or reduce erosion issues. The SID study revealed some systemic issues in the MRSW, for example, streamflow alteration was found to be the cause of at least six aquatic life impairments.

Restoration strategies in the MRS WRAPS focus on addressing *E. coli* bacteria impairments in several stream reaches, eutrophication and excess nutrients in lakes, and biological impairments summarized in the SID study. Strategies to address sources of *E. coli* to streams include feedlot management practices, manure management, septic system maintenance and upgrades, pasture management, and stormwater control measures in urbanized areas. Restoration practices for phosphorus reduction to impaired lakes include internal lake and shoreline management, cover crops and living cover, tillage management, nutrient and fertilizer management, buffers, pasture management, and septic system maintenance and upgrades. Strategies to address biologically impaired streams were developed based on recommendations and assessments from the SID study and include activities such as re-meandering streams using natural design principals, reconnecting flood plains, dam and culvert removal or modification, and instream and riparian habitat creation. All waters in the MRSW require protection in some capacity, including those listed as impaired and those with insufficient data. However, to better focus the overall implementation of the WRAPS and future planning efforts, it is important to prioritize areas for protection. Protection considerations were given for high value and high quality waters and waters at risk of impairment.

What is the WRAPS Report?

Minnesota has adopted a watershed approach to address the state's 80 major watersheds. The Minnesota watershed approach incorporates water quality assessment, watershed analysis, public participation, planning, implementation, and measurement of results into a 10year cycle that addresses both restoration and protection.

The watershed approach process facilitates a more cost-effective and comprehensive characterization of multiple waterbodies and overall watershed health, including both protection and restoration efforts. A key aspect of this effort is to develop and utilize watershed-scale models and other tools to identify strategies for addressing point and nonpoint source pollution that will cumulatively achieve water quality targets. For nonpoint source pollution, this report informs local planning efforts, but ultimately the local partners decide what work will be included in their local plans. This report also serves as the basis for addressing the U.S. Environmental Protection Agency's (EPA) Nine Minimum Elements of watershed plans, to help qualify applicants for eligibility for Clean Water Act Section 319 implementation funds.

As part of the watershed approach, the Minnesota Pollution Control Agency (MPCA) developed a process to identify and address threats to water quality in each of these major watersheds. This process is called Watershed Restoration and Protection Strategy (WRAPS) development. WRAPS reports have two parts: impaired waters have strategies for restoration, and waters that are not impaired have strategies for protection. Waters not meeting state standards are listed as impaired and TMDL studies are developed for them. The findings and the outcomes from the TMDLs are incorporated into WRAPS.

Purpose	 Support local working groups and jointly develop scientifically-supported restoration and protection strategies to be used for subsequent implementation planning Summarize watershed approach work done to date including the following reports: Mississippi River-Sartell Watershed Monitoring and Assessment Report Mississippi River-Sartell Watershed Biotic Stressor Identification Mississippi River-Sartell Watershed Total Maximum Daily Load Little Rock Lake Excess Nutrients Total Maximum Daily Load and Implementation Plan Upper Mississippi River Basin Bacteria Total Maximum Daily Load and Implementation Plan
Scope	 Impacts to aquatic recreation and impacts to aquatic life in streams and lakes Groundwater and drinking water impacts
Audience	 Local working groups (local governments, SWCDs, watershed management groups, etc.) State agencies (MPCA, DNR, BWSR, etc.)

1. Watershed background and description

The MRSW spans approximately 1,020 square miles in central Minnesota. The watershed is composed of portions of Morrison, Benton, and Stearns counties and also contains smaller sections of Crow Wing, Mille Lacs, and Todd counties.

The MRSW lies within the southern portion of the Northern Lakes and Forests ecoregion, which is dominated by nutrient-poor glacial soils, extensive sandy outwash plains, and broad lacustrine basins, and the northern portion of the North Central Hardwood Forests ecoregion, which is comprised of mainly rolling glacial till plains, lacustrine basins, outwash plains, and rolling moraines. The sand plain regions located along the Mississippi River are some of the most intensively cultivated lands within the watershed. The high infiltration rates of the soils within the sand plain

Crane Meadows National Wildlife Refuge offers ideal habitat for many wildlife species within the watershed (most notably Sandhill Cranes) while helping to protect water quality. Photo courtesy of Beau Liddell, <u>www.ImagesByBeaulin.com</u>

regions result in groundwater that is highly sensitive to pollution from surface sources. The diverse surface water resources within this watershed provide important recreational opportunities and economic benefits to citizens and visitors.

Land use is predominantly agricultural (corn, soybean, and alfalfa crops), followed by forested, grassland and pasture, and wetlands (Table 1 and Figure 1). Other crops in the watershed include dry beans, potatoes, rye, spring wheat, strawberries, and oats (CDL 2018). Agricultural land is highly irrigated in the MRSW, with several high capacity wells located in the central portion of the watershed. Areas of forests and wetlands are clustered in the northern portion of the watershed in Crow Wing County and the northeast corner of Morrison County. Forest and wetlands are also found clustered around lakes and the headwaters of streams. The Crane Meadows National Wildlife Refuge, an important stop for migratory birds, is an approximately 13,500-acre refuge located in Morrison County near Little Falls, Minnesota. The refuge was established in 1992 and features a unique sand plain wetland complex that provides critical habitat for waterfowl, shorebirds, sandhill cranes, and many other species.

Land cover	Percent
Corn & Soybeans	26%
Forest	21%
Grass/Pasture	18%
Wetlands	14%
Alfalfa	9%
Developed	6%
Other Crops	3%
Open Water	3%

Mississippi River–Sartell WRAPS Report

Only 6% of the watershed is developed for urban uses. Major developed areas include the city of Sartell along the main stem Mississippi River in the southern portion of the watershed, and other cities including Rice, Royalton, Pierz, Avon, and Albany. The city of Saint Cloud is located downstream of the watershed along the Mississippi River. The Mississippi River serves as the sole drinking water supply for the city of St. Cloud and a drinking water supply for the Twin Cities Metro Area.

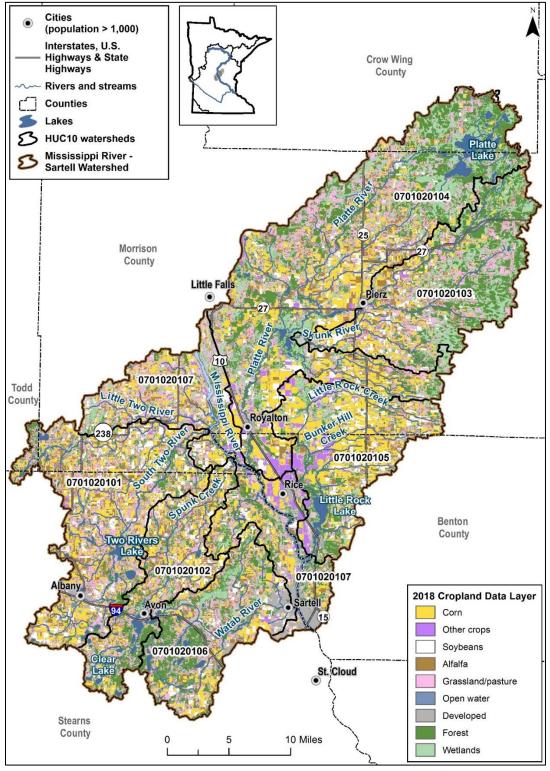


Figure 1. Land cover in the MRSW (Cropland Data Layer 2018).

Mississippi River–Sartell WRAPS Report

2. Watershed conditions

The Mississippi River is the main body of water in the MRSW. Bisecting the watershed, the Mississippi River enters the watershed in Morrison County and flows south through the center of the MRSW and the drainage areas of several of its tributaries. The majority of these tributaries are characterized by flowing streams with riffle habitat. Lakes are predominantly located in the northeastern and southwestern portions of the watershed. The main stem Mississippi River experiences one of its largest change in topography in the state of Minnesota as it flows through the MRSW, dropping six and a half feet per river mile.

Water quality and conditions of the MRSW are important to the downstream receiving waters and drinking water supplies for Saint Cloud and the Twin Cities. Several of the waterbodies within the MRSW are not meeting water quality standards and are impaired (Figure 2). Despite these impairments, several streams and lakes are demonstrating improving trends in water clarity in the watershed.

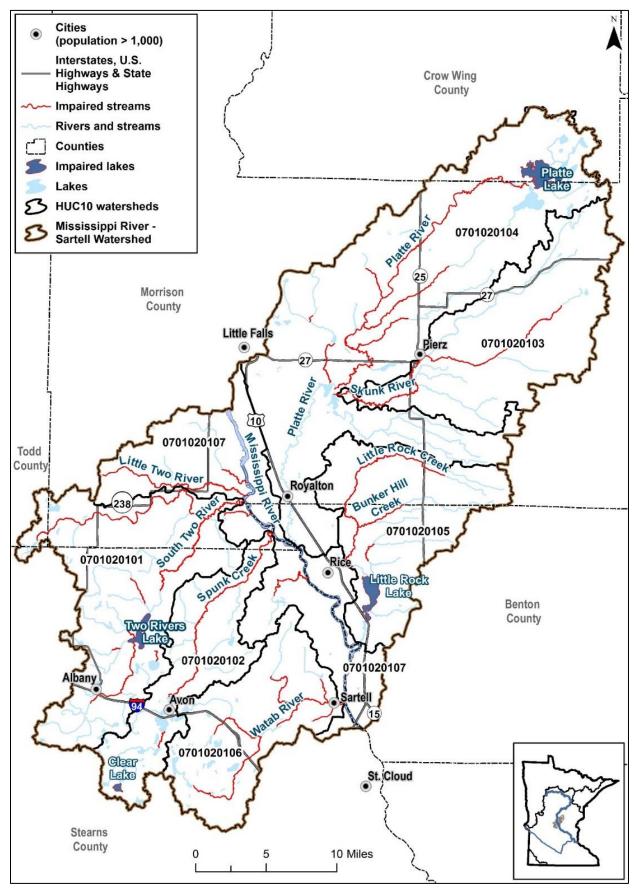


Figure 2. Impaired waters in the MRSW.

Mississippi River-Sartell WRAPS Report

2.1. Condition status

Beginning in 2016, the MPCA undertook an IWM effort of the surface waters in the MRSW. The MPCA assesses the water quality of streams and lakes based on each waterbody's ability to support a variety of uses, including aquatic life, aquatic recreation, drinking water, and aquatic consumption. Data from waterbodies are compared to state standards and targets. Waterbodies that do not meet the targets are considered to be impaired and require restoration; waterbodies that meet targets are considered to be fully supporting and are the focus of protection efforts. Waters that are not yet assessed continue through a process of data collection and evaluation and can be candidates for protection work. The Mississippi River–Sartell Watershed Monitoring and Assessment Report (MPCA 2019a) summarizes each waterbody's ability to support aquatic life (e.g., fish and macroinvertebrates) and aquatic recreation (e.g., fishing and swimming). Findings from this report are summarized below.

Some of the waterbodies in the MRSW are impaired by mercury; however, this report does not cover toxic pollutants. For more information on mercury impairments, see the statewide mercury TMDL at: http://www.pca.state.mn.us/index.php/water/watertypes-and-programs/minnesotas-impaired-watersand-tmdls/tmdl-projects/special-projects/statewidemercury-tmdl-pollutant-reduction-plan.html.

2.1.1. Streams

The *Mississippi River - Sartell Monitoring and Assessment Report* (MPCA 2019a) evaluated 50 stream reaches for aquatic recreation and/or aquatic life within the MRSW (Table 2). Sixteen of those reaches are not meeting water quality standards for aquatic life use, and 24 reaches were found not to meet the aquatic recreational use standard. Numerous stream reaches did not have sufficient data to be assessed for beneficial uses.

Success Story: Upper Mississippi River Assessment and Delisting

Separate from the IWM effort, the MPCA began monitoring large rivers in 2013, starting with the Upper Mississippi River from its headwaters to St. Anthony Falls in Minneapolis. Biology and chemistry data were collected in 2013 and 2014 as part of the Upper Mississippi River Assessment to determine if the river was meeting state water quality standards. The segment of the Mississippi River, 07010201-631, which runs from the confluence with the Swan River just south of Little Falls to the confluence with the Sauk River in Sauk Rapids, was found to be fully supporting of aquatic life use (fish and macroinvertebrates) and aquatic recreation.

Prior to the large river assessment, this Mississippi River segment was listed on the Minnesota 303(d) impaired waters list due to elevated levels of *E. coli* bacteria. After the completion of the assessment, this Mississippi River segment was determined to be meeting aquatic life and recreation standards, and was delisted for *E. coli* bacteria in 2016. Practices implemented by partners within and upstream of the MRS watershed greatly helped contribute to this success story. The Upper Mississippi River Monitoring and Assessment study is available here:

https://www.pca.state.mn.us/featured/uppermississippi-river-what-protect-what-fix.

Table 2. Assessment status of stream reaches in the MRSW.

				Aquatic life indicators										Aq. rec. use
HUC-10 subwatershed	AUID (Last 3 digits)	Stream	Reach description	Fish Index of Biotic Integrity (IB)I)	Macroinvertebrate IBI	Dissolved oxygen	Turbidity/TSS	Secchi tube (transparency)	Chloride	Hd	Ammonia	Eutrophication		Bacteria
	523	Two River	North & South Two R to Mississippi R	MTS	MTS	MTS	MTS	MTS	MTS	MTS	MTS	MTS	SUP	IMP
	532	South Two River	Schwinghammer Lk to Two River Lk	-	-	EXS	IF	MTS	MTS	MTS	-	IF	IMP	SUP
	524	North Two River	Headwaters (Mary Lk 77- 0019-00) to South Two R	MTS	MTS	MTS	MTS	MTS	MTS	MTS	MTS	IF	SUP	IMP
	542	South Two River	T125 R31W S21, south line to T125 R31W S23, east line	-	-	MTS	-	-	-	MTS	-	-	-	IMP
Two River	580	Unnamed Creek	Unnamed Cr to Two Rivers Lk	-	-	IF	MTS	IF	MTS	MTS	-	IF	IF	IMP
(0701020101)	610	Unnamed Creek	Pelican Lk to Little Mud Lk outlet	-	-	-	MTS	MTS	-	-	-	MTS	IF	IF
	612	Unnamed Creek	Unnamed Cr to Unnamed Cr	-	-	MTS	IF	IF	MTS	MTS	-	IF	IF	IMP
	613	Krain Creek	Unnamed Cr to Unnamed Cr	MTS	MTS	MTS	IF	MTS	MTS	MTS	IF	IF	SUP	IMP
	628	Unnamed Creek	Headwaters to Pelican Lk	-	-	-	IF	MTS	-	-	-	IF	IF	IMP
	632	Unnamed Creek	Headwaters to Unnamed Cr	NA	MTS	IF	IF	IF	-	IF	-	IF	SUP	-
	643	South Two River	River St to Two R	EXS	MTS	MTS	MTS	MTS	MTS	MTS	MTS	IF	IMP	IMP

											Aq. life use	Aq. rec. use		
HUC-10 subwatershed	AUID (Last 3 digits)	Stream	Reach description	Fish Index of Biotic Integrity (IB)I)	Macroinvertebrate IBI	Dissolved oxygen	Turbidity/TSS	Secchi tube (transparency)	Chloride	На	Ammonia	Eutrophication		Bacteria
Spunk Creek	525	Spunk Creek	Lower Spunk Lk to Mississippi R	MTS	MTS	MTS	IF	MTS	MTS	MTS	MTS	IF	SUP	IMP
(0701020102)	561	Spunk Branch	Kalla Lk to Upper Spunk Lk	-	-	NA	MTS	MTS	MTS	MTS	-	MTS	IF	IMP
	520	Skunk River	Headwaters (Skunk Lk 49- 0007-00) to Hillman Cr	MTS	MTS	IF	IF	IF	-	IF	IF	IF	SUP	-
	521	Skunk River	Hillman Cr to Platte R	MTS	MTS	MTS	IF	IF	MTS	MTS	MTS	IF	SUP	IMP
Skunk River	633	Unnamed Creek	Unnamed Cr to Skunk R	MTS	MTS	IF	IF	IF	-	IF	IF	IF	SUP	-
(0701020103)	636	Unnamed Creek	Headwaters to Hillman Cr	MTS	MTS	IF	IF	IF	-	IF	IF	IF	SUP	-
	637	Unnamed Creek	Unnamed Cr to Skunk R	MTS	MTS	IF	IF	IF	-	IF	IF	IF	SUP	-
	639	Hillman Creek	370th Ave to Skunk R	MTS	MTS	MTS	MTS	MTS	MTS	IF	MTS	IF	SUP	IMP
	507	Platte River	Headwaters (Platte Lk 18- 0088-00) to Skunk R	EXS	MTS	MTS	MTS	MTS	MTS	MTS	MTS	MTS	IMP	IMP
Platte River	545	Platte River	Unnamed Cr (above RR bridge) to Mississippi R	MTS	MTS	MTS	MTS	MTS	MTS	MTS	MTS	IF	SUP	IF
(0701020104)	546	Platte River	Rice-Skunk Lakes Dam to Unnamed Cr (above RR bridge)	MTS	-	IF	IF	IF	-	IF	IF	IF	SUP	-
	618	Rice Creek	Pelkey Lk to Rice Lk	MTS	EXS	IF	IF	IF	-	IF	IF	IF	IMP	-

				Aquatic life indicators										Aq. rec. use
HUC-10 subwatershed	AUID (Last 3 digits)	Stream	Reach description	Fish Index of Biotic Integrity (IB)I)	Macroinvertebrate IBI	Dissolved oxygen	Turbidity/TSS	Secchi tube (transparency)	Chloride	На	Ammonia	Eutrophication		Bacteria
	621	Unnamed Creek	Unnamed Cr to Unnamed Cr	MTS	MTS	IF	IF	IF	_	IF	IF	IF	SUP	_
	622	Unnamed Creek	Unnamed Ditch to Unnamed Cr	MTS	NA	IF	IF	IF	-	IF	-	IF	SUP	-
	634	Unnamed Creek	Unnamed Cr to Platte R	EXS	MTS	IF	IF	IF	-	IF	IF	IF	IMP	-
	645	Little Mink Creek	-94.119 46.014 to Platte R	MTS	EXS	IF	IF	IF	-	IF	IF	IF	IMP	-
Platte River (0701020104	646	Big Mink Creek	Headwaters to 235th Ave	-	-	EXS	MTS	MTS	-	IF	-	IF	IF	IMP
(continued)	647	Big Mink Creek	235th Ave to Platte R	MTS	EXS	-	-	-	-	-	-	-	IMP	-
	651	Unnamed Creek	-94.26 46.016 to Unnamed Cr	EXS	EXS	IF	IF	IF	-	IF	IF	IF	IMP	-
	511	Bunker Hill Creek	T38 R30W S6, north line to Little Rock Cr	EXS	EXS	MTS	MTS	IF	MTS	IF	MTS	IF	IMP	IF
	512	Bunker Hill Creek	Headwaters to T39 R30W S31, south line	-	-	IF	-	-	IF	IF	IF	IF	IF	-
Little Rock Creek (0701020105)	539	Zuleger Creek	Unnamed Cr to Unnamed Cr	EXS	EXS	IF	IF	IF		IF	IF	IF	IMP	-
(0,01020103)	541	Zuleger Creek	Unnamed Cr to Little Rock Lk	-	-	IF	IF	IF	IF	IF	IF	IF	IF	IF
	547	Little Rock Creek	Headwaters to T39 R30W S27, north line	-	-	IF	-	-	IF	IF	IF	-	IF	-

			Aquatic life indicators						Aq. life use	Aq. rec. use				
HUC-10 subwatershed	AUID (Last 3 digits)	Stream	Reach description	Fish Index of Biotic Integrity (IB)I)	Macroinvertebrate IBI	Dissolved oxygen	Turbidity/TSS	Secchi tube (transparency)	Chloride	На	Ammonia	Eutrophication		Bacteria
	550	Sucker Creek	Mayhew Cr to Little Rock Lk	-	-	IF	IF	IF	IF	IF	IF	IF	IF	IF
	588	Unnamed creek (Little Rock Creek Tributary)	T38 R31W S4, west line to Unnamed Cr	-	-	IF	-	-	IF	IF	IF	-	IF	-
	603	Unnamed Creek	Unnamed Cr to T39 R31W S28, east line	-	-	IF	-	-	IF	IF	IF	-	IF	-
Little Rock Creek	652	Little Rock Creek	T39 R30W S22, south line to T38 R31W S23, west line	EXS	MTS	EXS	IF	MTS	IF	MTS	MTS	IF	IMP	-
(0701020105) (continued)	653	Little Rock Creek	T39 R31W S22, east line to T38 R31W S28, east line	EXS	EXS	EXS	IF	IF	MTS	MTS	MTS	MTS	IMP	IMP
	528	Watab River	Rossier Lk to Mississippi R	EXS	MTS	MTS	MTS	MTS	MTS	MTS	MTS	MTS	IMP	IMP
	529	Watab River, North Fork	Headwaters (Stump Lk 73- 0091-00) to S Fk Watab R	MTS	MTS	MTS	MTS	IF	MTS	MTS	IF	MTS	SUP	IMP
Watab River	537	County Ditch 12	Unnamed Cr to Watab R	MTS	MTS	MTS	MTS	MTS	MTS	MTS	IF	MTS	SUP	IMP
(0701020106)	554	Watab River, South Fork	Little Watab Lk to Watab R	EXS	MTS	MTS	MTS	MTS	MTS	MTS	IF	MTS	IMP	IMP
	564	County Ditch 13	Bakers Lk to Watab R	-	-	EXS	MTS	MTS	MTS	MTS	-	MTS	IMP	IMP
	616	County Ditch 16	Headwaters to Watab R	-	-	IF	IF	IF	MTS	MTS	-	MTS	IF	IMP
	516	Little Two River	Headwaters to Mississippi R	MTS	MTS	MTS	MTS	MTS	-	IF	IF	MTS	SUP	IMP

				Aquatic life indicators					Aq. life use	Aq. rec. use				
HUC-10 subwatershed	AUID (Last 3 digits)	Stream	Reach description	Fish Index of Biotic Integrity (IB)I)	Macroinvertebrate IBI	Dissolved oxygen	Turbidity/TSS	Secchi tube (transparency)	Chloride	На	Ammonia	Eutrophication		Bacteria
City of Sartell-	569	Hazel Creek	Unnamed Ditch to Mississippi R	EXS	MTS	IF	IF	IF	-	IF	IF	IF	IMP	-
Mississippi River	630	Hay Creek	Unnamed Cr to Mississippi R	MTS	MTS	MTS	IF	MTS	-	IF	IF	IF	SUP	IMP
(0701020107)	649	Stony Creek	-94.31 45.728 to Mississippi R	MTS	MTS	NA	MTS	MTS	MTS	MTS	IF	IF	SUP	IMP

Abbreviations for Indicator Evaluations: - = No Data, NA = Not Assessed, IF = Insufficient Information, MTS = Meets criteria, EXS = Exceeds criteria, potential impairment.

Abbreviations for Use Support Determinations: NA = Not Assessed, IF = Insufficient Information, IMP = does not meet the water quality standard and is therefore impaired, SUP = Found to meet the water quality standard.

2.1.2. Lakes

The *Mississippi River - Sartell Monitoring and Assessment Report* (MPCA 2019a) evaluated 51 lakes for aquatic recreation within the MRSW. (Table 3). Three of those lakes were found not to meet the aquatic recreational use standard and two were found not to meet the aquatic life use standard. Numerous lakes did not have sufficient data to assess for this use.

HUC-10 subwatershed	Lake ID	Lake	Assessment method	Aquatic life use	Aquatic recreation use
	73-0118-00	Pelican	Deep Lake	SUP	SUP
	73-0136-00	Pine	Deep Lake	IF	SUP
	73-0138-00	Two Rivers	Deep Lake	IMP	IMP
	73-0177-00	North	Shallow Lake	IF	IF
Two River (0701020101)	73-0190-00	Bear	Deep Lake	IF	IF
(0701020101)	73-0191-00	Fish	Shallow Lake	IF	IF
	73-0204-00	Gravel	Deep Lake	IF	IF
	73-0330-00	Unnamed	Shallow Lake	IF	IF
	49-0140-00	Cedar	Deep Lake	SUP	SUP
	77-0019-00	Mary	Deep Lake	SUP	IF
	73-0097-00	Kreigle	Deep Lake	IF	SUP
	73-0098-00	Pitts	Shallow Lake	IF	SUP
	73-0099-00	Minnie	Deep Lake	IF	SUP
	73-0100-00	Kalla	Deep Lake	IF	SUP
	73-0117-00	Big Spunk	Deep Lake	SUP	SUP
Spunk Creek	73-0122-00	Ochotto	Deep Lake	IF	SUP
(0701020102)	73-0123-00	Lower Spunk	Deep Lake	SUP	SUP
	73-0127-00	Linneman	Shallow Lake	IF	SUP
	73-0128-00	Middle Spunk	Deep Lake	SUP	SUP
	73-0129-00	Minnie	Shallow Lake	IF	SUP
	73-0166-00	Коор	Deep Lake	IF	SUP
	73-0172-00	Clear	Deep Lake	IMP	SUP
	49-0020-00	Coon	Shallow Lake	IF	IF
	49-0025-00	Rice	Shallow Lake	IF	IF
	49-0026-00	Skunk	Shallow Lake	IF	IF
	49-0030-00	Pelkey	Shallow Lake	IF	IF
	49-0033-00	Popple	Shallow Lake	IF	IF
Platte River	18-0008-00	Twenty Two	Shallow Lake	IF	IF
(0701020104)	18-0009-00	Erskine	Shallow Lake	SUP	IF
	18-0011-00	Bass	Deep Lake	IF	IF
	18-0014-00	Bulldog	Deep Lake	IF	IF
	18-0016-00	Rock	Deep Lake	IF	IF
	18-0088-00	Platte	Deep Lake	SUP	IMP
	18-0422-00	Unnamed	Shallow Lake	IF	IF

Table 3. Assessment status of lakes in the MRSW.

HUC-10 subwatershed	Lake ID	Lake	Assessment method	Aquatic life use	Aquatic recreation use
	49-0005-00	Peavy	Deep Lake	SUP	SUP
	49-0015-00	Long	Deep Lake	SUP	SUP
	49-0016-00	Sullivan	Deep Lake	SUP	SUP
	49-0019-00	Round	Deep Lake	SUP	SUP
	49-0024-00	Pierz	Deep Lake	SUP	SUP
Little Rock Creek (0701020105)	05-0013-00	Little Rock	Shallow Lake	IF	IMP
	73-0064-00	Kraemer	Deep Lake	IF	IF
	73-0070-00	Watab	Deep Lake	IF	SUP
	73-0071-00	Lower Watab	Shallow Lake	IF	SUP
	73-0072-00	Rossier	Deep Lake	IF	IF
	73-0092-00	Sagatagan	Deep Lake	IF	IF
Watab River (0701020106)	73-0096-00	Schuman	Deep Lake	IF	SUP
(0701020100)	73-0101-00	Schmid	Deep Lake	IF	SUP
	73-0102-00	Big Watab	Deep Lake	SUP	SUP
	73-0104-00	Island	Deep Lake	SUP	SUP
	73-0125-00	Achman	Shallow Lake	IF	SUP
	73-0126-00	Anna	Shallow Lake	IF	SUP

Abbreviations for Use Support Determinations: **IF** = Insufficient Information, **IMP** = does not meet the water quality standard and is therefore impaired, **SUP** = Found to meet the water quality standard.

2.2. Water quality trends

The <u>Mississippi River - Sartell Monitoring and Assessment Report</u> (MPCA 2019a) evaluated long term trends in water clarity as well as annual nitrogen, phosphorus and sediment pollutant loads calculated as part of the <u>Watershed Pollutant Load Monitoring Network</u> (WPLMN). WPLMN is a long-term statewide river monitoring network initiated in 2007 and designed to obtain pollutant load information from 199 river monitoring sites throughout Minnesota. The program utilizes state and federal agencies, universities, local partners, and MPCA staff to collect water quality and flow data to calculate nitrogen, phosphorus, and sediment pollutant loads.

WLPMN monitoring sites span three ranges of scale:

- **Basin** major river main stem sites along the Mississippi, Minnesota, Rainy, Red, Des Moines, Cedar and St. Croix rivers
- **Major Watershed** tributaries draining to major rivers with an average drainage area of 1,350 square miles (8-digit HUC scale)
- **Subwatershed** major branches or nodes within major watersheds with average drainage areas of approximately 300-500 square miles

In addition, a pre- and post- implementation water quality analysis was completed on Little Rock Lake and on three streams in the Little Rock Lake watershed for the purposes of this WRAPS report. This analysis evaluated progress that has been made since data were collected for the Little Rock Lake watershed TMDL in 2006 through 2008.

Summaries of these water quality trend efforts are provided in the following subsections.

2.2.1. Long-term trends

Recent data analysis conducted by the MPCA in the *Mississippi River–Sartell Monitoring and Assessment Report* (2019a) indicates increasing water clarity (measured by Secchi tube - streams, Secchi disc - lakes) trends at the Mississippi River near Royalton, and Spunk Creek downstream of Spunk Lake while no stream sites had decreasing water clarity. Ten lakes within the watershed were also found to have increasing trends in water clarity: Cedar, Kalla, Sullivan, Pierz, Rossier, Big Watab, Pelican, Lower Spunk, Middle Spunk, and Pine lakes; four lakes were found to have declining trends in water clarity: Platte, Long, Kraemer, and Linneman. Table 4 provides a summary of these trend analysis findings.

Table 4. Long-term water clarity trends in the MRSW. Information provided by MPCA 2019a.

	Streams	Lakes
Number of sites with increasing trend	3	10
Number of sites with decreasing trend	0	4
Number of sites with no trend	4	15

2.2.2. Watershed Pollutant Load Monitoring Network

There are four WPLMN sites located in the MRSW (Table 5 and Figure 3). The Mississippi River at Royalton and Sartell are "basin" sites, which are monitored year-round, while the Platte River site is a "subwatershed" site and monitored seasonally from ice out through October 31. Approximately 25 to 35 water quality samples are collected at each WPLMN monitoring site per year. Annual pollutant loads are calculated for the basin sites, with results shown below in flow weighted mean concentration (FWMC) and total mass for total suspended solids (TSS), total phosphorus (TP), and nitrate plus nitrite nitrogen (NO3+NO2-N) for the two basin sites (Figure 4 and Figure 5). In general, FWMCs for all parameters are lower for the MRSW than for watersheds in southern and northwestern Minnesota (Figure 6).

The Mississippi River at Sauk Rapids WPLMN site (W15009002) is located just downstream of the MRSW. As such, water quality data and trends evaluated at this site are representative of the entire MRSW. A recent trends analysis by the MPCA WPLMN staff of water quality samples at the Mississippi River at Sauk Rapids sampling location found a significant increase in instream nitrate+nitrite concentrations, and a significant decrease in instream phosphorus concentrations from 2008 to 2018. There was no significant trend in TSS.

Site type	Stream name	DNR/MPCA site ID
Basin	Mississippi River at Royalton, MN	E15001002
Basin	Mississippi River at Sartell	W15009003
Basin	Mississippi River at Sauk Rapids	W15009002
Subwatershed	Platte River near Royalton	H15030001

Mississippi River–Sartell WRAPS Report

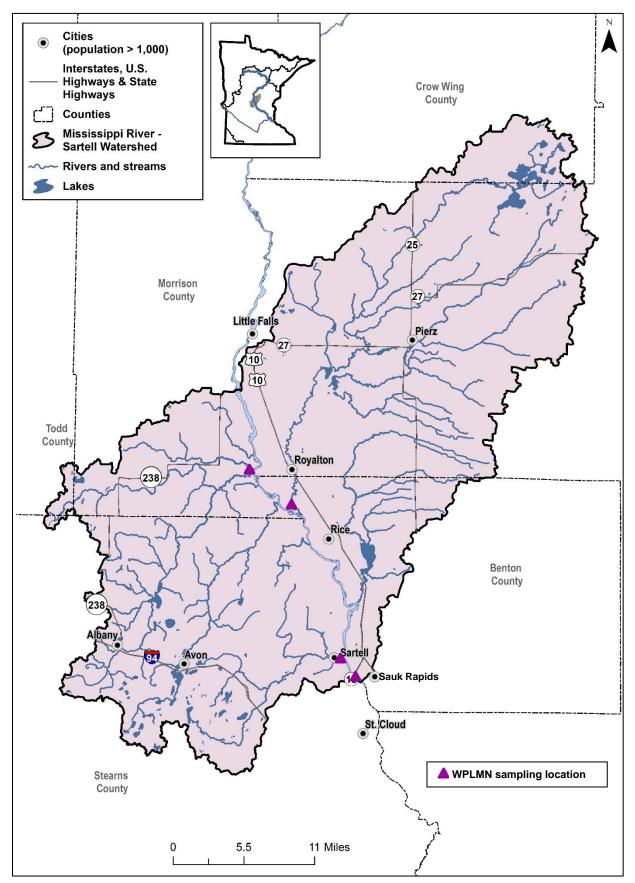


Figure 3. WPLMN sampling locations.

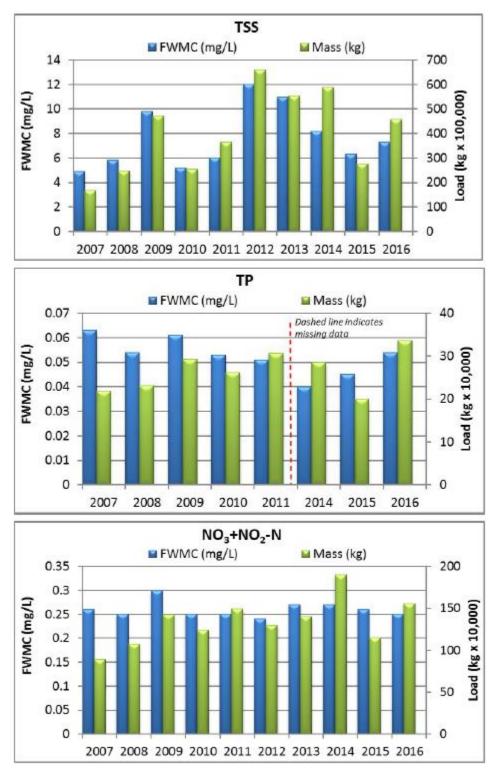


Figure 4. TSS, TP, and NO₃+NO₂-N flow weighted mean concentrations and loads for the Mississippi River at Royalton, Minnesota, 2007-2016 (Figure 31 in the monitoring and assessment report, MPCA 2019a).

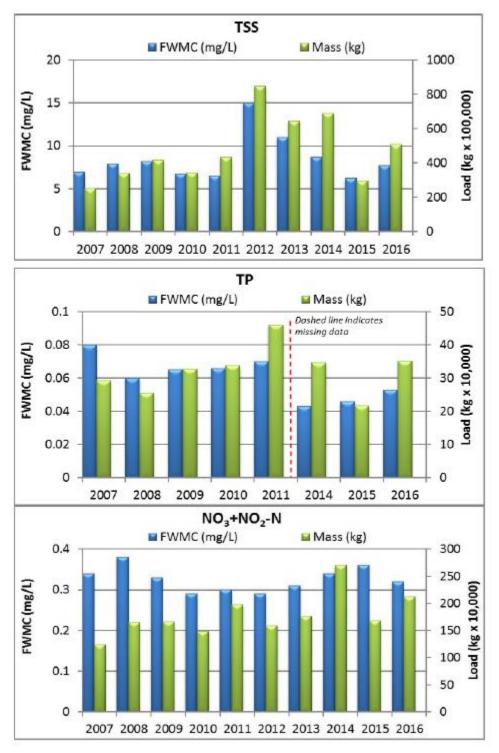
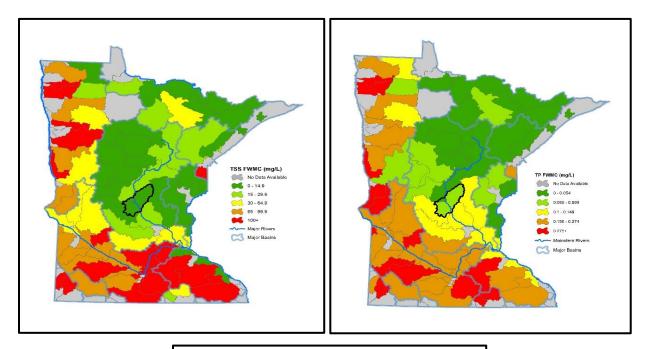



Figure 5. TSS, TP, and NO3+NO2-N flow weighted mean concentrations and loads for the Mississippi River at Sartell, Minnesota, 2007-2016 (Figure 32 in the monitoring and assessment report, MPCA 2019a).

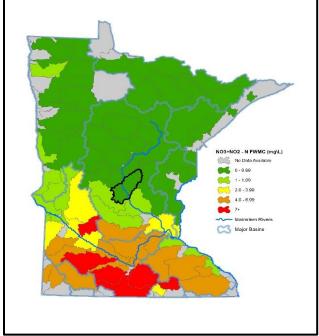


Figure 6. 2007-2016 Average annual TSS, TP, and NO3-NO2-N flow weighted mean concentrations by major watershed (Figure 30 in the monitoring and assessment report, MPCA 2019a).

2.2.3. Little Rock Lake Watershed: Pre- and post-implementation periods

A water quality analysis was completed on Little Rock Lake and on three streams in the Little Rock Lake watershed (Figure 7) to evaluate progress that has been made since data were collected for the Little Rock Lake watershed TMDL in 2006 through 2008 (Benton SWCD 2015). A fourth stream, Zuleger Creek, was not included in the analysis because measuring its flow is difficult and as a result water quality data were not collected or available for comparison.

Data collected from 2006 through 2008 are considered "pre-implementation," and data collected from 2016 through 2018 are considered "post-implementation." Data provided by Benton SWCD for 2016 through 2018 were combined with data from the MPCA's Environmental Quality Information System (EQuIS) database from 2006 through 2008 and 2018.

Benton and Morrison SWCDs have been working cooperatively to promote and install best management practices (BMPs) resulting in the installation of over 85 (as of 2018) BMPs since the TMDL was completed for excess nutrients in 2012 (Figure 8). These 85 practices work to reduce and filter watershed runoff through practices such as filter strips and wetland restorations, reduce erosion and sedimentation through practices such as cover crops and water and sediment control basins, and reduce the amount of nutrients and fecal bacteria reaching surface waters through manure and nutrient management practices and septic system replacements. In addition to these 85 BMPs, the Minnesota Buffer Law requires 700 parcels in the watershed (598 in Benton County and 102 in Morrison County) to maintain a permanent vegetated buffer along public waters and drainage systems.

Differences between the pre- and post-implementation periods cannot be solely attributed to BMP implementation because factors other than implementation of BMPs, such as climate and land use changes and river flow also influence water quality. Effective BMP implementation, however, likely made positive contributions between the pre-implementation and post-implementation periods. Installed BMP are provided in Figure 8.

Severe Blue-Green algae bloom on Little Rock Lake 2007. Photo from Benton SWCD.

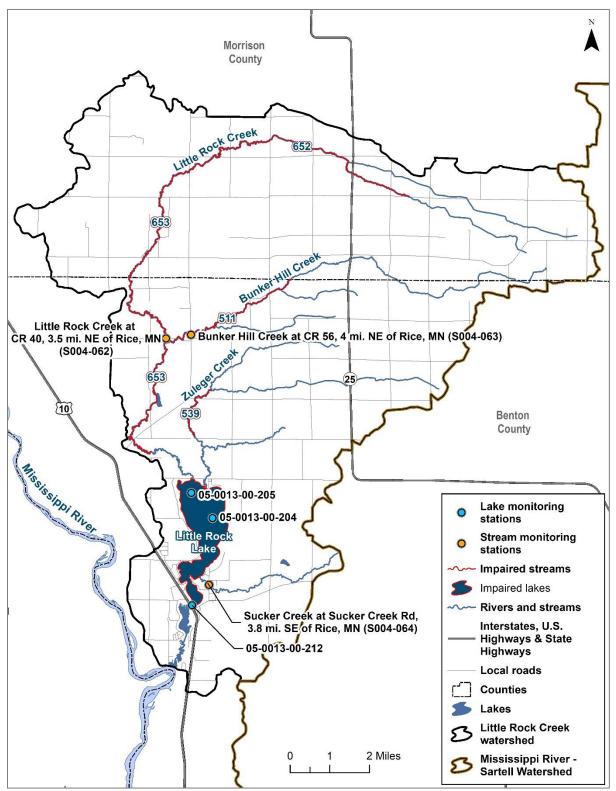


Figure 7. Little Rock Lake Watershed monitoring stations.

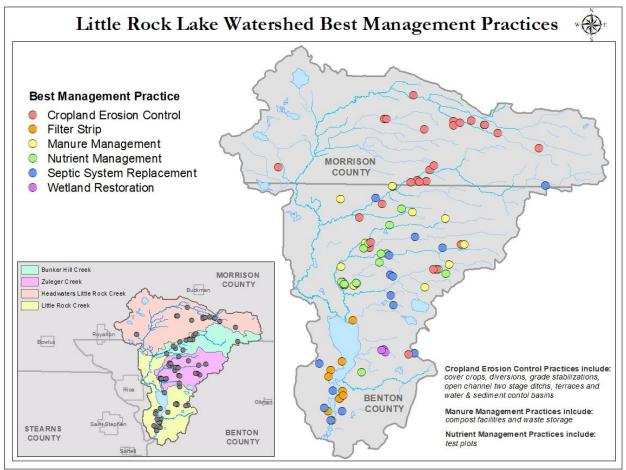
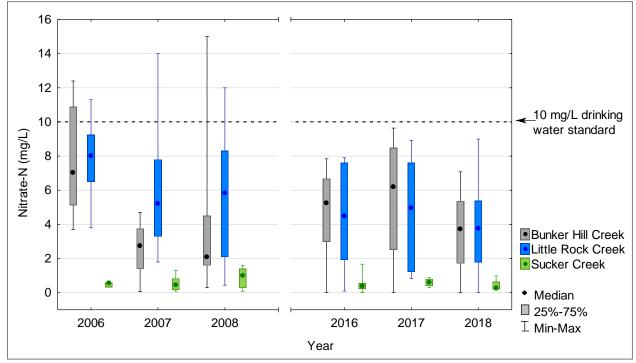


Figure 8. Little Rock Lake watershed BMPs (Image from Benton SWCD).


<u>Streams</u>

Nutrient concentrations, oxygen demand, and sediment concentrations were evaluated in the three focus streams—Little Rock Creek, Bunker Hill Creek, and Sucker Creek.

Nitrate concentrations decreased on average in Little Rock Creek (Figure 9). Although a statistically significant trend was not detected in Bunker Hill Creek, the maximum observed nitrate concentration decreased from 15 mg/L in 2006 through 2008 to 9.6 mg/L in 2016 through 2018, with no samples exceeding the standard in the latter period. A trend was not observed in Sucker Creek; however, concentrations are lower in that creek compared to Bunker Hill and Little Rock Creek, with a maximum observed nitrate concentration of 1.7 mg/L.

The patterns in nitrate concentrations are likely at least in part due to lower stream flows on average in the pre-implementation period compared to the post-implementation period (Figure 10). Nitrate is diluted as stream flows increase and therefore, all other things being equal, would be expected to be lower under the higher flows of the post-implementation period.

Total Kjeldahl nitrogen (TKN) represents organic nitrogen and ammonia-nitrogen (does not include nitrate). TKN concentrations decreased on average in Bunker Hill and Sucker Creek (Figure 11). Although a significant trend was not detected in Little Rock Creek, the maximum observed TKN concentration decreased from 8 mg/L in 2006 through 2008 to 3 mg/L in 2016–2018. The maximum observed TKN

concentration decreased in Bunker Hill Creek from 11 mg/L in 2006 through 2008 to 3 mg/L in 2016 through 2018.

Figure 9. Nitrate concentrations in Little Rock Lake watershed, 2006–2008 vs. 2016–2018.

Nitrate data from EQuIS are nitrate plus nitrite-nitrogen, and nitrate data from Benton SWCD are labeled nitrate nitrogen. Because nitrite concentrations in surface waters are typically low, these two datasets were assumed to be comparable and were combined for this analysis.

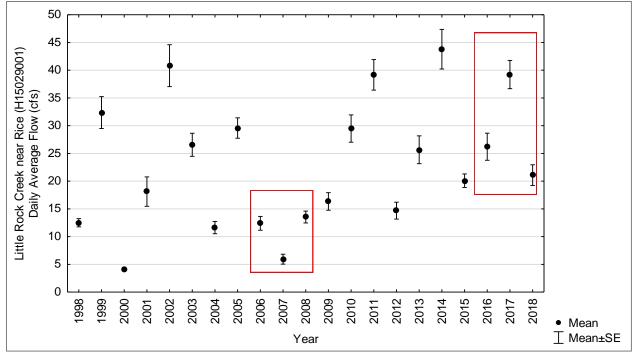


Figure 10. Mean annual flows monitored at Little Rock Creek near Rice (H15029001), 1998–2018, with the preimplementation (2006–2008) and post-implementation (2016–2018) periods highlighted.

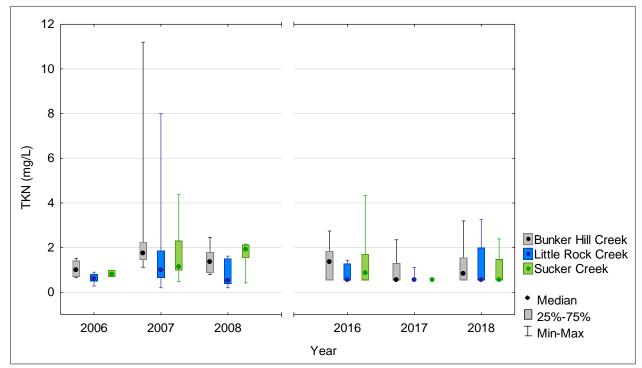


Figure 11. Total Kjeldahl nitrogen concentrations in Little Rock Lake watershed, 2006–2008 vs. 2016–2018.

TP concentrations did not show statistically significant changes in the three streams (Figure 12). TSS increased in Bunker Hill Creek and Little Rock Creek (Figure 13). Because TSS is primarily transported during higher flows, the increase in TSS is likely at least in part due to the higher flows in the post-implementation period.

Less data are available for biochemical oxygen demand (BOD₅) during the pre-implementation period. BOD did not show statistically significant changes in the three streams (Figure 14).

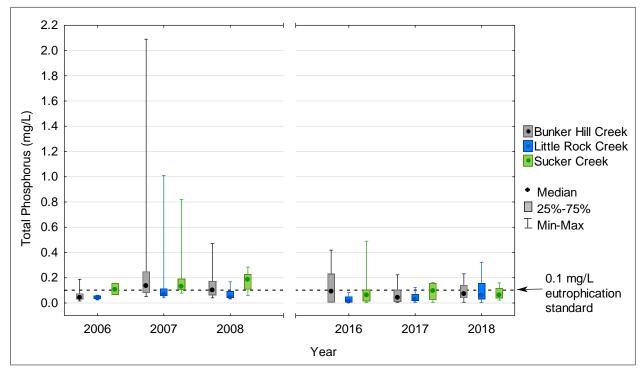


Figure 12. Total phosphorus concentrations (June–September) in Little Rock Lake Watershed, 2006–2008 vs. 2016–2018.

When determining eutrophication impairment, both the causal indicator (i.e., phosphorus) and a response indicator (i.e., chlorophyll-*a*, BOD, diel DO flus, or pH) must be violated. The eutrophication standard is compared to the June through September average concentrations (MPCA 2017).

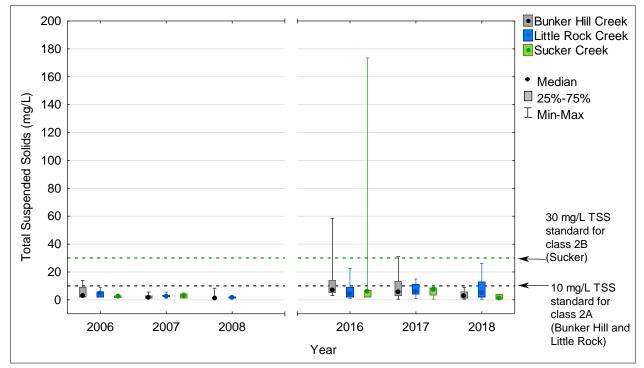
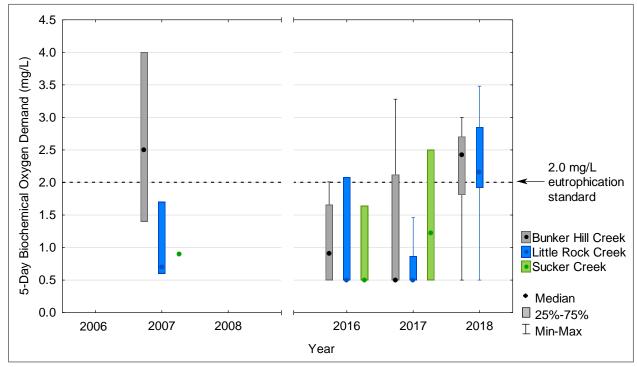
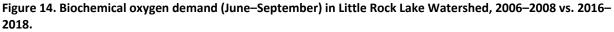
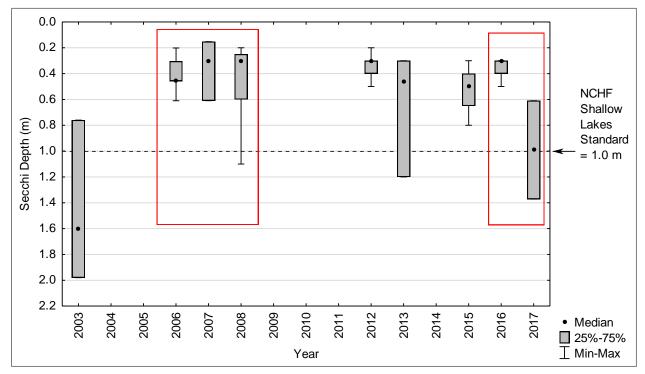




Figure 13. Total suspended solids (April–September) in Little Rock Lake Watershed, 2006–2008 vs. 2016–2018.



One outlier is excluded from this figure and the statistical analysis: 96 mg/L BOD on 6/15/2016 at Sucker Creek.

Little Rock Lake

Data from site 05-0013-00-204 were used for the comparison of pre- and post-implementation conditions, because data were collected at this site during both time periods. Lake water quality data were not collected in 2018; therefore, the post-implementation period data set for the lake is 2016–2017. There were no statistically significant changes in lake water quality between the two time periods. The lack of statistically significant differences does not necessarily imply that water quality conditions have not improved, but rather that there are not enough data to detect a difference. Based on visual inspection of the data, water transparency in 2017 was on average the deepest that it had been since 2003 (Figure 15). Transparency was poor in 2006 through 2008, and there is more evidence of deeper transparencies in later years.

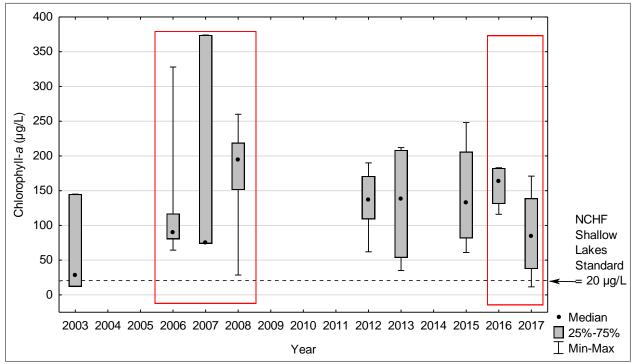

Phosphorus and chlorophyll-*a* concentrations increase in the early years, after which they appear to decrease (Figure 16 and Figure 17). The maximum phosphorus and chlorophyll-*a* concentrations in the post-implementation period were all lower than the maximum concentrations in the pre-implementation period.

Figure 15. Little Rock Lake Secchi depth (June–September); site 05-0013-00-204. Pre-implementation (2006–2008) and post-implementation (2016–2017) periods are highlighted.

Figure 16. Little Rock Lake total phosphorus surface concentrations (June–September); site 05-0013-00-204. Pre-implementation (2006–2008) and post-implementation (2016–2017) periods are highlighted.

Figure 17. Little Rock Lake chlorophyll-*a* **surface concentrations (June–September); site 05-0013-00-204.** Pre-implementation (2006–2008) and post-implementation (2016–2017) periods are highlighted.

Discussion

Changes in water quality were observed in the Little Rock Lake watershed in the TMDL postimplementation period (2016 through 2018) relative to the pre-implementation period (2006 through 2008). Statistically significant (using a Student's t-test p<0.05) reductions in nitrogen and increases in TSS in streams were observed (Table 6). However, these results are confounded with differences in flow during the two time periods—flows on average were lower in the pre-implementation period than in the post-implementation period (Figure 10). Higher flows in the post-implementation period could explain the lower nitrate concentrations in Little Rock Creek and the higher TSS in Little Rock Creek and Bunker Hill Creek. Because flows have such a strong influence on water quality, differences in water quality between the two periods could be attributed to the differences in flow or other environmental factors not evaluated here.

The lake data suggest improvements in water quality; however, the differences were not statistically significant. The lack of statistically significant differences does not necessarily imply that water quality conditions have not improved, but rather that there are not enough data to detect a difference.

Since the completion of this analysis, a lake drawdown was conducted on Little Rock Lake and is expected to have positive impacts to its water quality. In addition to continued implementation of the 2012 TMDL, Benton SWCD plans to continue monitoring the Little Rock Creek, Bunker Hill Creek, and Sucker Creek stations into the foreseeable future including collecting chemistry samples for nitrate, BOD, TKN, chlorophyll-*a*, and TSS as well as temperature, pH, DO, and flow measurements.

Table 6. Summary of pre- and post-implementation stream water quality trend evaluation.

Each pre- and post-implementation comparison was evaluated with a Student's t-test (p<0.05). Data were log transformed where the transformed data better met the assumptions of the t-test.

	Bunker Hill Creek	Little Rock Creek	Sucker Creek
Parameter	(Site S004-063)	(Site S004-062)	(Site S004-064)
Nitrate	-	Decrease	_
ТКМ	Decrease	-	Decrease
Total Phosphorus	_	-	-
Biochemical Oxygen Demand	_	-	-
Total Suspended Solids	Increase	Increase	-

"-" no statistically significant change

2.3. Stressors and sources

In order to develop appropriate strategies for restoring or protecting waterbodies, the stressors and/or sources impacting or threatening the waterbodies must be identified and evaluated. Stressors to waterbodies with either fish or macroinvertebrate impairments are determined through a biological SID process. SIDs evaluate both pollutant and nonpollutant-related (e.g., altered hydrology, fish passage, habitat) factors as potential stressors. If a nonpollutant stressor is linked to a pollutant (e.g., habitat issues driven by TSS or low DO caused by excess phosphorus), a TMDL is required. Nonpollutant stressors are not subject to load quantification and therefore do not require TMDLs. Waters determined to be stressed by degraded habitat and other nonpollutant stressors are not addressed by TMDLs but are still priorities for restoration efforts.

Different from stressors, sources of pollutants are determined through a pollutant source assessment. A pollutant source assessment for pollutant related TMDLs is provided in the MRSW TMDL Report (Tetra Tech 2020). A full pollutant source assessment was conducted for the MRSW for pollutants of concern and is provided below.

2.3.1. Stressors of biologically-impaired stream reaches

Stressors of biologically impaired stream reaches were determined in the <u>Mississippi River - Sartell</u> <u>Watershed Stressor Identification Report</u> (Figure 18, MPCA 2019b). Primary stressors analyzed included temperature, longitudinal connectivity, streamflow alteration, lack of habitat, suspended sediment, nutrients (nitrate toxicity/eutrophication) and low DO. Ammonia, herbicides, insecticides, metals and unspecified toxins were minimally assessed due to time and data limitations. The most common stressors identified in the SID report are lack of habitat, streamflow alteration, and low DO. Streamflow alteration, resulting from changes in land use, vegetation and precipitation was often an indirect driving factor behind habitat and DO (Table 7).

The Minnesota Department of Natural Resources (DNR) is currently developing a SID for Two Rivers Lake (73-0138-00) and Clear Lake (73-0172-00). Draft results of the SID for the two lakes were shared at public meetings throughout the MRS WRAPS development. Final results and any applicable implementation strategies from the SID report can be used to support the MRS WRAPS report and in the subsequent 1W1P for the area.

Table 7. Summary of aquatic life impairments and stressors in the MRSW (Table 1 of stressor identification report, MPCA 2019b).

	IBI = Fishes Index of Biotic Integrity, MIBI = Macroinvertebrate Index of Biotic Integrity									
Denotes Morrison Cour										
Denotes Stearns Count										
Denotes Benton Count			1							
WID (07010201-###)	Impairment indicator	Temperature	Longitudinal connectivity	Streamflow alteration	Lack of habitat	Suspended sediment	Nitrate toxicity	Eutrophication	Low dissolved oxygen	Metals- iron
Trib to Platte (-634)	FIBI		CS						CS	I
Big Mink Cr (-647)	MIBI			I.	CS	L.	1	I.	CS	I.
Little Mink Cr (-645)	MIBI			I.	CS	L.	I.	I.	CS	I
Platte R (-507)	FIBI		CS		MS/I					
Rice Cr (-618)	MIBI			L.		L.		I.	CS	
Unnamed Cr (-651)	FIBI & MIBI		CS	CS	CS				I.	
Hazel Cr (-569)	FIBI		CS	I.			I.			
South Two R (-643)	FIBI			I	CS	I		I	I	
Watab R, South Fork (-554)	FIBI		CS	I	CS				I.	I
Watab R (-528)	FIBI			CS	CS	L.				
Little Rock Cr (-652)	FIBI		MS	CS	CS	I	I	I.	I	
Little Rock Cr (-653)	FIBI & MIBI	CS	MS	CS	CS	I	CS	I	CS	
Bunker Hill Cr (-511)	FIBI & MIBI	CS	MS	CS	CS	I.	CS	I.	I.	
Zuleger Cr (-539)	FIBI & MIBI	I.	MS	CS	CS	L. L.	I.	I.	I.	

CS = Conclusive Stressor, I = Inconclusive, MS = Minor Stressor (stressor is present, but is not primary cause of impairment) FIBI = Fishes Index of Biotic Integrity, MIBI = Macroinvertebrate Index of Biotic Integrity

Excerpts of the summaries provided for each assessment unit identification (AUID) analyzed in the SID report (MPCA 2019b) are included below.

- Unnamed Creek (Tributary to Platte River) (634). Longitudinal connectivity appears to be a primary stressor of the fish community. Low DO is also a stressor; however it is likely due to the natural phenomenon from groundwater inputs and riparian wetlands. Metals, specifically iron and possibly manganese, are suspected stressors to aquatic life at the biological station, but remain inconclusive until more data become available. Streamflow alteration does not appear to be a direct stressor, although a historical beaver dam may have affected the quality and availability of some habitat.
- **Big Mink (647).** Of the potential stressors investigated, lack of habitat (primarily productive riffle habitat) and low DO were conclusively determined to be stressors to the macroinvertebrate community. The cause of low DO levels in unknown at this time. Eutrophication and suspended sediments are inconclusive stressors, both of which may be interrelated and driven by streamflow alteration. Iron and nitrate toxicity are also inconclusive stressors.
- Little Mink (645). Of the potential stressors investigated, low DO and degraded habitat due to excess fine bedded sediment were conclusively determined to be stressors to the aquatic life. Metals, particularly iron, in the stream is a suspected, though inconclusive, stressor. Streamflow alteration, a result of stream channelization, may be driving or exacerbating the low DO and excess sediment, but is also inconclusive at this time. Total phosphorus (TP) and nitrate toxicity were determined to be inconclusive stressors.
- **Platte River (507).** The cause of the poor fish index of biotic integrity (FIBI) scores were not conclusively determined, with the exception of the Platte River Dam impeding fish passage into

16UM117 and lack of habitat at 10EM102. The stressors at the other locations with failing FIBI scores were inconclusive. For instance, lack of habitat is a potential stressor at 16UM123, but more data are needed to be conclusive. And, low DO is a suspected stressor at 16UM117. Another potential stressor to the fish community is the wetland-like and eutrophic condition of the Rice-Skunk Lakes area that may be deterring some sensitive fish species from moving into this segment

- Rice Creek (618). Low DO is the primary stressor to aquatic life. It is unclear if the low DO is
 naturally occurring due to the wetland conditions of the watershed, and/or if anthropogenic
 activity, such as ditching and nutrient input, has affected the water chemistry of Rice Creek.
 Therefore, streamflow alteration (due to channelization) and eutrophication are inconclusive
 stressors.
- Unnamed Creek (651). Streamflow alteration, as a result of the watershed channelization, fallen trees, and eroding streambanks, is degrading habitat and is the primary stressor to aquatic life. In addition, the culvert at 173rd Street is impeding fish passage. It is unknown to what degree the low DO occurring downstream in Rice Creek (-618) is responsible for the low FIBI scores.
- Hazel Creek (569). Longitudinal connectivity is the greatest stressor to the fish community in Hazel Creek, a result of an improperly installed culvert under Great River Road. Lack of streamflow is also a stressor, but it is unclear whether or not the intermittent nature of the stream is due to anthropogenic activity. Nitrate toxicity is an inconclusive, though suspected, stressor.
- South Two River (643). The most likely stressor of the fish community is a lack of habitat complexity and quality coarse substrate. It is unclear if the poor habitat at both monitoring sites is a direct result of anthropogenic activity. Four stressors were inconclusive: eutrophication, low DO, suspended sediment, and streamflow alteration.
- Watab River, South Fork (554). Of the potential stressors investigated, longitudinal connectivity was conclusively determined to be a stressor to the fish community. At 07UM101, lack of habitat is also a conclusive stressor, and low flow magnitude is an inconclusive stressor, both possibly driven by streamflow alteration. Streamflow alteration, as a result of the watershed land use and channelization of the stream near 07UM101, is currently an inconclusive stressor and suspected to be driving the lack of habitat and low flow at 07UM101. Other inconclusive stressors are iron and low DO at 16UM081.
- Watab River (528). Of the potential stressors investigated, lack of habitat was conclusively determined to be a stressor to the fish community. Habitat degradation is being driven by streamflow alteration and geomorphic instability of the Watab River. Suspended sediment was found to be an inconclusive stressor.
- Little Rock Creek (652). The primary stressor to aquatic life is streamflow alteration and lack of habitat. The change in streamflow pattern has degraded and even eliminated habitat by causing bank erosion and channel incision. Longitudinal connectivity is also a stressor to some fish as a result of the frequently hypereutrophic conditions of Little Rock Lake and the Sartell WMA dam height, which varies and can block fish entering this segment from upstream and downstream

waters. Stressors found to be inconclusive are suspended sediment, nitrate toxicity, eutrophication, and low DO.

- Little Rock Creek (653). Of the stressors investigated, those confirmed include high temperature, lack of connectivity, streamflow alteration, lack of habitat, low DO, and nitrate toxicity. Inconclusive stressors are high TSS and TP (eutrophication). The primary stressor is streamflow alteration, which is driving the warm temperatures, lack of connectivity, lack of habitat, and likely the low DO.
- **Bunker Hill Creek (511).** Of the stressors investigated, those confirmed were high temperatures, connectivity barriers, streamflow alteration, lack of habitat, and nitrate toxicity. Inconclusive stressors were suspended sediment, eutrophication, and low DO.
- **Zuleger Creek (539).** Of the stressors investigated, those confirmed were longitudinal connectivity, streamflow alteration, and lack of habitat, although streamflow alteration is driving the habitat degradation.

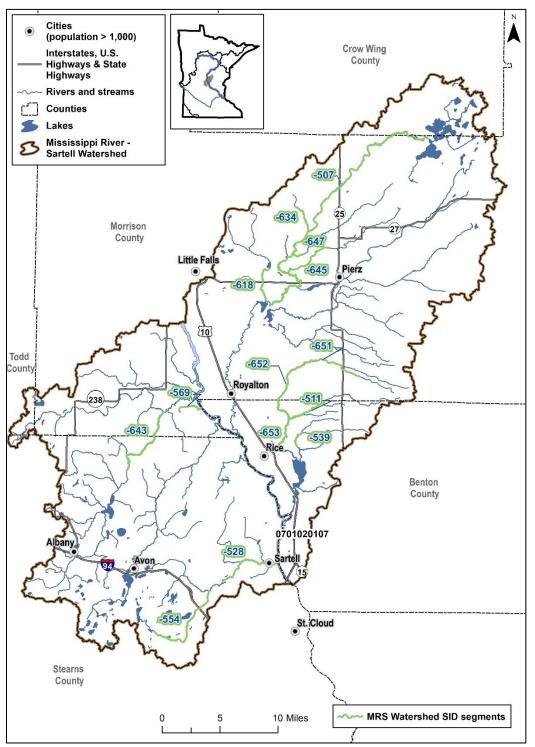
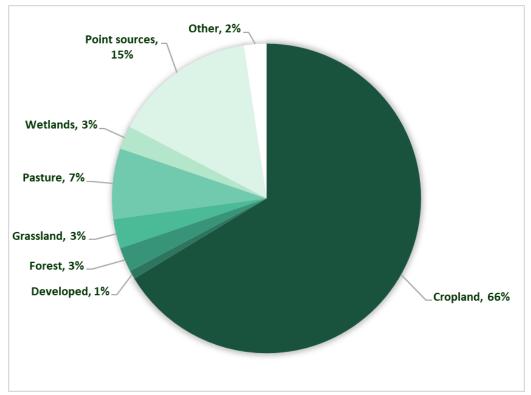


Figure 18. Stream AUIDs assessed in the MRSW Stressor Identification Report.


2.3.2. Pollutant sources

Sources of phosphorus, nitrogen, and sediment in the MRSW were quantified with MPCA's Hydrologic Simulation Program–Fortran (HSPF) model application of the MRSW (Figure 19, Figure 21, and Figure 23). HSPF is a comprehensive model of watershed hydrology and water quality that allows the integrated simulation of point sources, land and soil contaminant runoff processes, and in-stream hydraulic and sediment-chemical interactions. The results provide hourly runoff flow rates, sediment concentrations, and nutrient concentrations, along with other water quality constituents, at the outlet of any modeled subwatershed. Model documentation contains additional details about the model development and recalibration (Tetra Tech 2018).

HSPF was also used to quantify upland loading rates of phosphorus, sediment and nitrogen by subwatershed within the MRSW (Figure 20, Figure 22, and Figure 24). Within each subwatershed, the upland areas are separated into multiple land use categories. Simulated loads from upland areas represent the pollutant loads that reach the modeled stream or lake; the loading rates do not represent field-scale soil loss estimates. Note that modeled streams do not typically include ditches, ephemeral streams, or small perennial streams. The model evaluated both permitted and nonpermitted sources including watershed runoff, near-channel, and wastewater point sources. Sources of *E. coli* were not quantified with the HSPF model. Therefore, a more qualitative approach was used to determine potential sources of *E. coli* in the watershed.

Phosphorus

HSPF modeling results indicate that cropland sources account for 66% of the phosphorus load in the MRSW, followed by point sources at 15% (Figure 19). Upland loading rates for phosphorus are provided by model catchment in Figure 20.

Figure 19. Sources of phosphorus in the MRSW (Tetra Tech 2018). Note: "Other" includes direct atmospheric deposition, septic systems, and feedlots.

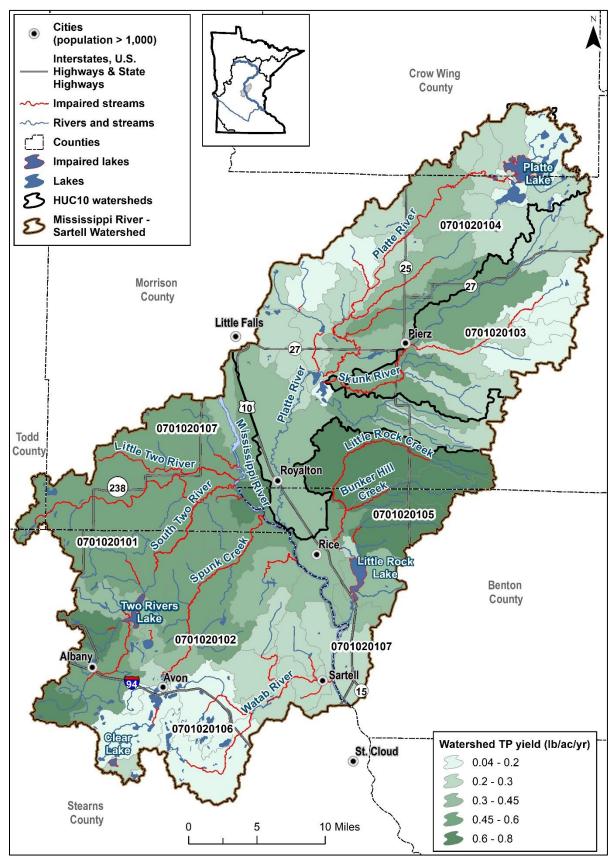


Figure 20. Upland loading rates of TP (lb/ac/yr) by HSPF model catchment.

Sediment

HSPF modeling results indicate that cropland sources account for 83% of the sediment load in the MRSW (Figure 21). Upland loading rates for sediment are provided by model catchment in Figure 22. The highest sediment yielding watersheds are in the upper Little Rock Creek watershed and in the area surrounding the city of Albany.

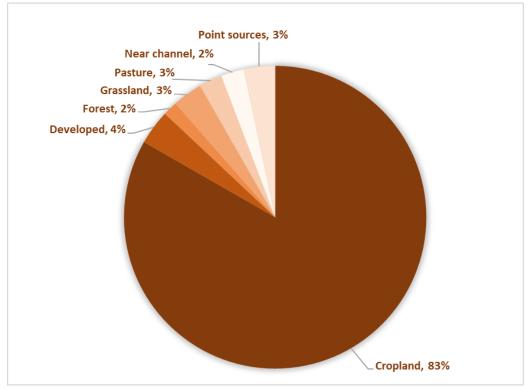


Figure 21. Sources of sediment in the MRSW (Tetra Tech 2018).

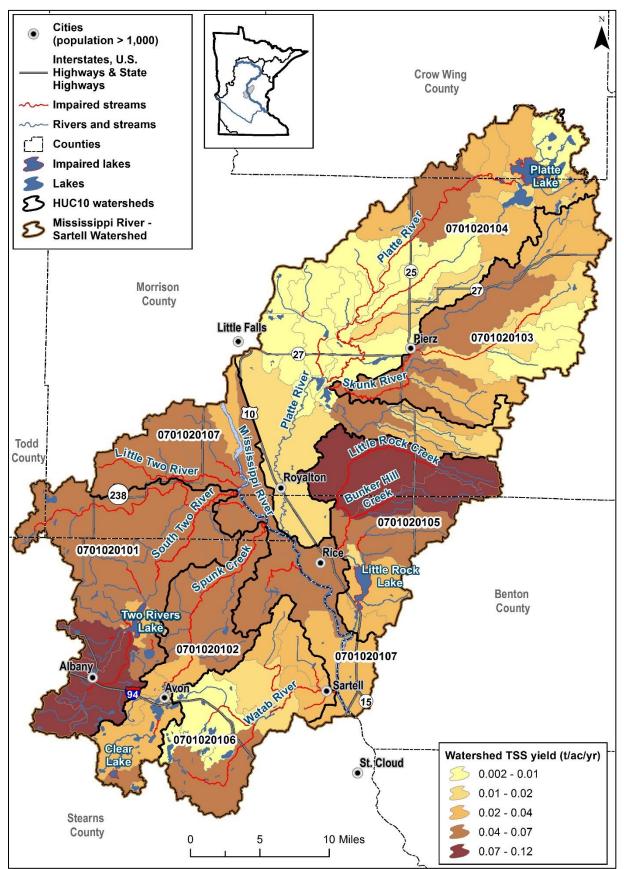
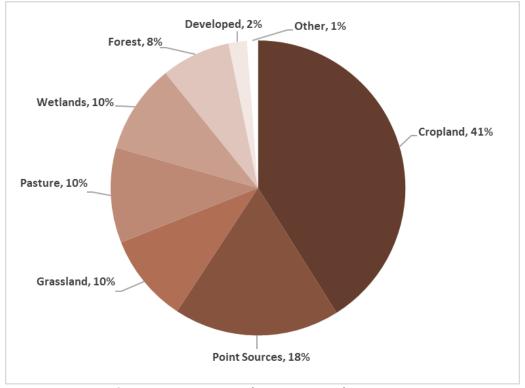



Figure 22. Upland loading rates of TSS (tons/ac/yr) by HSPF model catchment.

Nitrogen

HSPF modeling results indicate that, similar to sediment and phosphorus, the predominant source of nitrogen in surface runoff is from cropland sources, which contribute 41% of the total nitrogen to the watershed. Cropland sources are followed by point sources at 18%, and grassland, pasture, and wetlands at 10% each (Figure 23). Upland loading rates for nitrogen are provided by model catchment in Figure 24.

Figure 23. Sources of Nitrogen in the MRSW (Tetra Tech 2018). Note: "Other" includes direct atmospheric deposition, septic systems, and feedlots.

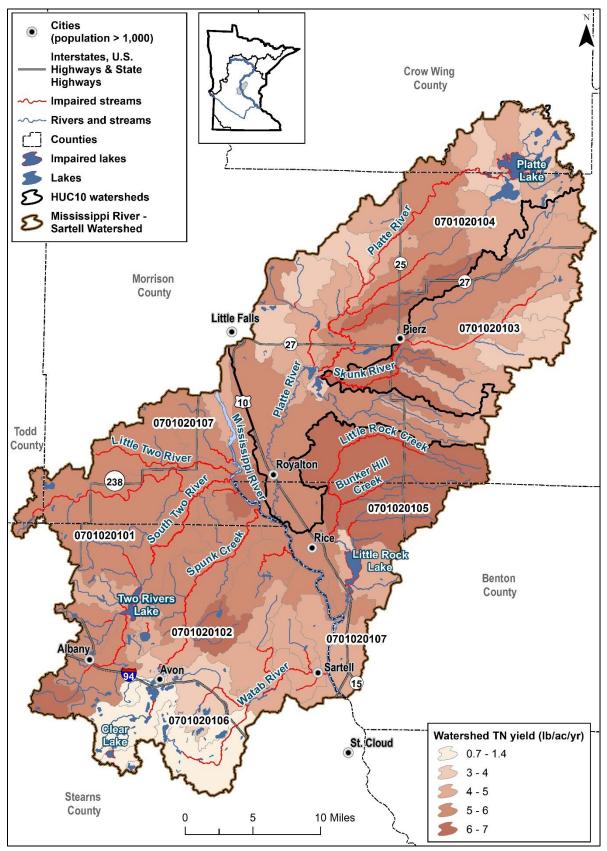


Figure 24. TN yield (lb/ac/yr) by HSPF model catchment.

Mississippi River-Sartell WRAPS Report

E. coli

The TMDL study (Tetra Tech 2020) identifies feedlots and waste from livestock as the predominant sources of *E. coli* to impaired streams in the MRSW. The TMDL describes sources as follows:

- Animal waste from animal feeding operations (AFOs) can be delivered to surface waters from failure of manure containment or runoff from the AFO itself. Waste from livestock is a source of concern when feedlots are numerous and/or are located close to surface waterbodies. In addition, improperly treated or improperly applied manure that is applied to agricultural fields can be a source of *E. coli* to surface water.
- Permitted and nonpermitted stormwater runoff is considered a source of *E. coli* for streams that flow through developed areas. Waste from wildlife and pets is considered with stormwater runoff because waste from these sources is delivered to surface waters through stormwater runoff.
- Effluent from wastewater treatment plants in *E. coli*-impaired subwatersheds is typically below the *E. coli* standard and is not considered a significant source.
- Subsurface sewage treatment systems (SSTS) that are classified as imminent threats to public health and safety, or SSTS that discharge untreated sewage to the land surface or directly to streams, are illegal systems and can contribute *E. coli* to surface waters. Imminent threats to public health and safety do not make up a large percentage of total SSTSs in the watershed. However, they should be addressed as they pose a threat to human and environmental health and are a potential source of *E. coli*.

All animal operations, registered and nonregistered, have a potential to contribute *E. coli*. Likelihood of this contribution is based on management of animal areas and manure. The MPCA Data Desk provided the feedlot locations and numbers and types of animals in registered feedlots. For ease of comparison, animal counts were converted into animal units. Per Minn. R. ch. 7020, "animal unit" means a unit of measure used to compare differences in the production of animal manure that employs as a standard. Cattle, poultry, and swine facilities are common throughout the watershed. These facilities have animal units per facility ranging from less than 100 to over 2,100 (Figure 25).

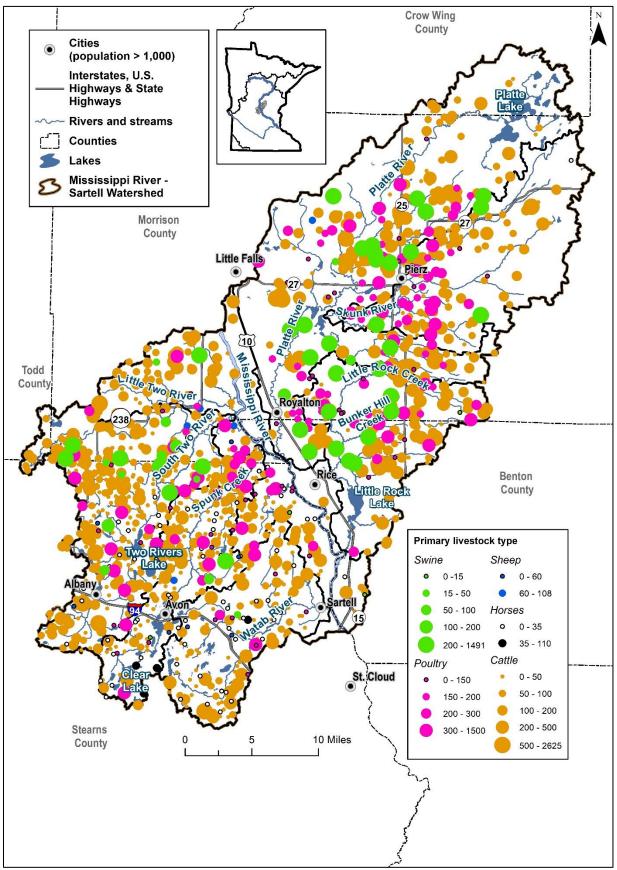


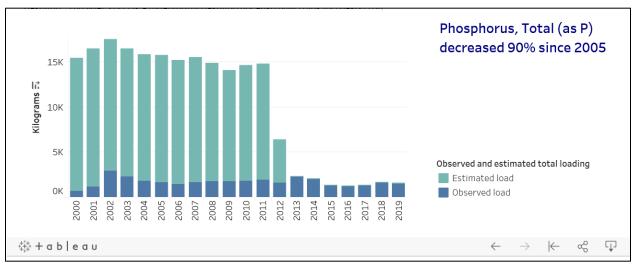
Figure 25. Primary livestock types in the MRSW.

NPDES/SDS Permitted Sources

Entities that are permitted under the National Pollutant Discharge Elimination System (NPDES) or State Disposal System (SDS) within the MRSW are provided in Table 8. NPDES/SDS permitted entities within the MRSW include municipal and industrial wastewater, stormwater (municipal, industrial and construction), and AFOs. The name and location of these permitted facilities can be found at https://www.pca.state.mn.us/data/whats-my-neighborhood.

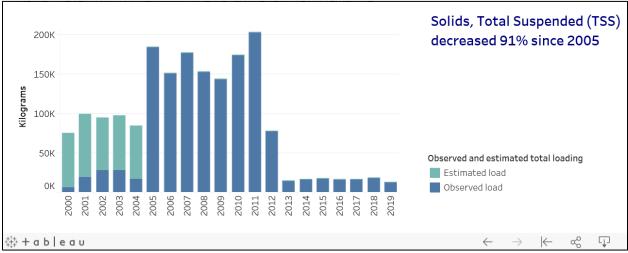
	Point source				
HUC-10 subwatershed	Туре	Permit #			
		MN0020575			
	Municipal wastewater	MN0020923			
Two River (0701020101)		MN0023710			
	Municipal stormwater	MS400068			
	Animal feeding operation	MN0069787			
	Industrial stormwater	MNR050000			
	Construction stormwater	MNR100001			
	Municipal wastewater	MN0047325			
	Municipal stormwater	MS400068			
Spunk Creek (0701020102)	Animal feeding operation	MN0069311			
	Industrial stormwater	MNR050000			
	Construction stormwater	MNR100001			
	Municipal wastewater	MNG580211			
	Industrial wastewater	MNG490133			
		MNG440542			
Skupk Biver (0701020102)	Animal feeding operation	MNG440897			
Skunk River (0701020103)	Animal reeding operation	a			
		^a			
	Industrial stormwater	MNG490000 and MNR050000			
	Construction stormwater	MNR100001			
	Municipal wastewater	MN0020460			
	Industrial wastewater	MNG490039			
	Municipal stormwater	MS400227			
		MNG440722			
Platte River (0701020104)	Animal feeding operation	MNG440723			
		a			
		a			
	Industrial stormwater	MNG490000 and MNR050000			
	Construction stormwater	MNR100001			
	Municipal wastewater	MN0065391			
Little Rock Creek (0701020105)	Municipal stormwater	MS400067			
	Municipal storniwater	MS400161			
		MS400180			

Table 8. Point sources (NPDES or SDS permitted) in the MRSW.


	Point source				
HUC-10 subwatershed	Туре	Permit #			
		^a			
	Animal feeding operation	a			
	Industrial stormwater	MNR050000			
	Construction stormwater	MNR100001			
	Municipal wastewater	MN0022411			
	Industrial wastewater	MN0046035			
		MS400048			
		MS400052			
		MS400068			
	Municipal stormwater	MS400125			
Watab River (0701020106)		MS400143			
		MS400157			
		MS400159			
		MS400180			
	Industrial stormwater	MNG490000, MNR050000 and MNRNE0000			
	Construction stormwater	MNR100001			
		MN0056481			
	Municipal wastewater	MN0066109			
		MN0067733			
		MNG580053			
	Industrial wastewater	MNG255084			
		MNG490003			
		MS400048			
		MS400052			
		MS400067			
		MS400068			
City of Sartell-Mississippi River (0701020107)	Municipal stormwator	MS400118			
(0,0102010))	Municipal stormwater	MS400143			
		MS400153			
		MS400159			
		MS400161			
		MS400180			
		MS400227			
	Animal feeding operation	MNG440799			
	Industrial stormwater	MNG490000, MNR050000 and MNRNE0000			
	Construction stormwater	MNR100001			

a. NPDES permit # not provided in MPCA database.

Pollutant loading from wastewater treatment facilities


The MPCA tracks estimated and observed pollutant load calculations from wastewater treatment facilities (WWTF) over time through the *Healthier watersheds: Tracking the actions taken* website (<u>https://www.pca.state.mn.us/water/wastewater-treatment-plant-progress</u>). Figure 26 and Figure 27 provide the pollutant loading values for WWTF within the MRSW from 2000 to 2019 according to the Healthier watersheds site for phosphorus, and TSS. Nitrogen loading is not recording on the Healthier Watersheds Tracking system.

Pollutant loading values shown in the below figures are a mix of observed data and values estimated based on previously reported values. The loads are considered accurate but are based on calculations and not raw data. Loads are derived by multiplying the monthly average concentration and monthly total flow. These calculated loads are used for research and planning purposes and may vary slightly from discharge monitoring reports due to calculation methods. Note, in 2005, new rules expanded monitoring requirements for facilities and is therefore used as a baseline for loading rates. Since 2005, TP loading from WWTF has decreased 90%, TSS has decreased 91%, and biological oxygen demand has decreased 29% in the MRSW.

Figure 26. Phosphorus loading (kilograms) from WWTF in the MRSW 2000 to 2019 (MPCA Healthier Watersheds).

Note: permitted discharger Verso Paper Company was no longer active in 2012 and their permit was terminated in 2013. This is reflected in the sudden drop in phosphorus from 2011-2013.

Figure 27. TSS loading kilograms) from WWTF in the MRSW 2000 to 2019 (MPCA Healthier watersheds). Note, permitted discharger Verso Paper Company was no longer active in 2012 and their permit was terminated in 2013. This is reflected in the sudden drop in sediment from 2011-2013.

2.4. TMDL summary

The Clean Water Act and EPA regulations require that TMDLs be developed for waters that do not support their designated uses (fishable, swimmable, consumable). A TMDL is a plan to restore and maintain water quality standards in waters that are not currently meeting them. Waterbodies with impairments determined to be caused from a pollutant are addressed with the development of a TMDL; waterbodies determined to be impaired from a nonpollutant stressor do not require the development of a TMDL. Table 9 provides a summary of the existing TMDLs within the MRSW. TMDLs within the watershed include:

- Little Rock Lake Nutrient TMDL, 2012. The Little Rock Lake TMDL was developed to address a
 nutrient impairment for Little Rock Lake. Algal toxin (microcystin) samples collected during a
 large blue green algae bloom during the summer of 2007 were determined to be a "high health
 risk" level according to World Health Organization standards. Due to severity of the algae
 bloom, Little Rock Lake was put on the draft 2008 Impaired Waters List. TMDL development was
 led by Benton SWCD (Benton SWCD 2011).
- <u>Upper Mississippi River Bacteria TMDL Study & Protection Plan</u>, **2014**. The Upper Mississippi River Bacteria TMDL describes the reduction in pollutant loading for 22 stream reaches that have impaired aquatic recreation due to *E. coli*, nine of which are located within the Mississippi River–Sartell Watershed (MPCA 2014).
- <u>Little Rock Creek TMDL</u>, 2017. The Little Rock Creek TMDL addresses the impaired segment (-548) on Little Rock Creek for DO, nitrate, temperature and fish bioassessment impairments. This effort was led by the Benton SWCD (Benton SWCD 2015).
- **Mississippi River–Sartell TMDL, 2020.** The Mississippi River–Sartell TMDL addresses 15 stream reaches that have impaired aquatic recreation due to *E. coli,* and two lakes that have impaired aquatic recreation due to nutrient/eutrophication biological indicators (Tetra Tech 2020).

In addition, several waterbodies within the MRSW have aquatic consumption impairments due to high levels of mercury in fish tissue. Because the focus of the watershed condition assessment is the aquatic life, aquatic recreation, and limited resource value designated uses, the aquatic consumption impairments are not addressed here. For more information on mercury impairments, see the *Minnesota Statewide Mercury Total Maximum Daily Load* (MPCA 2007).

HUC-10	Water- body	AUID ^a / Lake ID	Year added to List	Affected use	Pollutant or stressor	Year TMDL plan approved
	Two River	523	2014	Aquatic Recreation	E. coli	2014
	North Two River	524	^b	Aquatic Recreation	E. coli	anticipated 2020
	South Two River	542	b	Limited Resource Value	E. coli	anticipated 2020
Two River	South Two River	543°	2014	Aquatic Recreation	E. coli	2014
(0701020101)	Unnamed creek	580	b	Aquatic Recreation	E. coli	anticipated 2020
	Unnamed creek	612	b	Aquatic Recreation	E. coli	anticipated 2020
	Krain Creek	613	p	Aquatic Recreation	E. coli	anticipated 2020
	Unnamed creek	628	b	Aquatic Recreation	E. coli	anticipated 2020
Spunk Creek	Spunk Creek	525	2008	Aquatic Recreation	Fecal Coliform	2014
(0701020102)	Spunk Branch	561	^b	Aquatic Recreation	E. coli	anticipated 2020
Skunk River (0701020103)	Hillman Creek	639	^b	Aquatic Recreation	E. coli	anticipated 2020
Platte River	Platte River	507	^b	Aquatic Recreation	E. coli	anticipated 2020
(0701020104)	Big Mink Creek	646	p	Aquatic Recreation	E. coli	anticipated 2020
	Little Rock Creek	548 ^c	2002	Aquatic	Lack of cold water assemblage	2017
Little Rock Creek	CIEEK	5-0	2010	Life	Dissolved oxygen	2017
(0701020105)	Little Rock Creek	653	^b	Aquatic Recreation	E. coli	anticipated 2020
	Little Rock	05-0013-00	2008	Aquatic Recreation	Nutrient/eutrophication biological indicators	2012
	Watab River	528	2014	Aquatic Recreation	E. coli	2014
Watab River (0701020106)	Watab River, North Fork	529	2014	Aquatic Recreation	E. coli	2014
	County Ditch 12	537	2014	Aquatic Recreation	E. coli	2014

Table 9	Summarv	of		within	the	MRSW
Table 3.	Juilliary	v	TIVIDLS	WILIIII	uie	10111300.

Mississippi River–Sartell WRAPS Report

HUC-10	Water- body	AUID ^a / Lake ID	Year added to List	Affected use	Pollutant or stressor	Year TMDL plan approved
	Watab River, South Fork	554	2014	Aquatic Recreation	E. coli	2014
	County Ditch 13	564	2014	Aquatic Recreation	E. coli	2014
	County Ditch 16	616	^b	Aquatic Recreation	E. coli	anticipated 2020
City of Sartell- Mississippi	Little Two River	516	2014	Aquatic Life Aquatic Recreation	E. coli	2014
River (0701020107)	Hay Creek	630	^b	Aquatic Recreation	E. coli	anticipated 2020
	Stony Creek	649	^b	Aquatic Recreation	E. coli	anticipated 2020

a. The AUIDs begin with 07010201; the values in this column are the last 3 digits of the AUID.

b. Expected to be listed on the 2020 303(d) impaired waters list.

c. South Two River (543) and Little Rock Creek (653) were not evaluated in the *Mississippi River-Sartell Monitoring and Assessment Report* and therefore not included in Table 2. The two segments remain on the impaired waters list.

2.5. Protection considerations

All waters in the MRSW require protection in some capacity, including those listed as impaired and those with insufficient data. It is important to prioritize areas for protection, however, to better focus implementation of the WRAPS. For example, waters that are particularly threatened or vulnerable may be considered at risk for further degradation and impairment and prioritized for protection efforts. Alternatively, or in addition, unique and high value resources that exhibit the highest biological, cultural, and social significance in the region may also be prioritized for protection in order to ensure their continued high quality. This section provides an overview of existing information that can be used when considering protection efforts during WRAPS implementation.

2.5.1. Statewide River and Stream Protection Prioritization

An interagency effort among the MPCA, DNR, and Board of Water and Soil Resources (BWSR 2018) was conducted to develop a protection prioritization process for streams in Minnesota that are currently meeting water quality standards for fish and macroinvertebrate communities—i.e., streams that are fully supporting aquatic life. Streams that are impaired for aquatic life use were not included. More information on the prioritization effort is available: <u>https://www.pca.state.mn.us/sites/default/files/wq-ws1-29.pdf</u>.

Protection prioritization was based on 1) the results of water quality assessments, 2) the level of protection already in place in the watershed, and 3) the level of risk posed from the contributing watershed and nearshore areas. While all streams require protection, top priority, or "priority A" streams are summarized in Table 10 and Figure 28. A full list of streams evaluated during this process and their individual scores is provided in Appendix A.

The "community nearly impaired" column indicates if the fish and/or macroinvertebrate community Index of Biological Integrity (IBI) scores are on average within five points of the assigned threshold (and therefore close to impairment). Riparian risk is based on road density and disturbed land use within the riparian area. Current protection level is based on percentage of public and easement protected land in the subwatershed.

HUC-10 subwatershed	Stream name (AUID)	Community nearly impaired	Riparian risk	Current protection level
	Two River (523)	one	high	med/low
Two River	North Two River (524)	neither	high	low
(0701020101)	Krain Creek (613)	one	high	low
	Unnamed creek (632)	one	med/high	low
Spunk Creek (0701020102)	Spunk Creek (525)	one	med/high	med/low
Church Diver	Skunk River (521)	neither	high	low
Skunk River	Unnamed creek (636)	one	med/high	low
(0701020103)	Unnamed creek (637)	neither	high	low
Dista Dissa	Platte River (545)	neither	high	med/low
Platte River	Platte River (546)	one	high	med/low
(0701020104)	Unnamed creek (621)	neither	high	med/low
	Unnamed creek (622)	one	med/high	med/low
	Watab River, North Fork (529)	one	med/high	low
Watab River	County Ditch 12 (537)	neither	high	low
(0701020106)	Hay Creek (630)	neither	high	med/low
	Stony Creek (649)	neither	high	low

Table 10. Priority streams for protection as identified in the statewide interagency effort.

2.5.2. Statewide Lake Protection Prioritization

The same interagency effort also prioritized Minnesota lakes for protection (MPCA, DNR, BWSR 2018). The effort developed goals for lakes that are currently meeting water quality standards, identified unimpaired lakes that are at greatest risk, and developed a preliminary priority ranking for protection efforts. While all lakes require protection, top priority, or "priority A" lakes, represent those that are at the greatest risk of impairment and are summarized in Table 11 and Figure 28. A full list of lakes evaluated during this process, their target TP concentrations, and their individual scores are provided in Appendix A.

Protection prioritization for lakes was based on numerous parameters including lake's sensitivity to increased phosphorus loading, proximity to the water quality standard, the percent of disturbed land use in the watershed, lake size, existing phosphorus levels, and whether the lake shows a declining trend in water clarity. A selection of these parameters are provided in the below table.

HUC-10 subwatershed	Lake name (ID)	Disturbed land use (%)	Mean total phosphorus (µg/L)	Water clarity trend
Two River	Cedar (49-0140-00)	37%	14.8	Improving trend
(0701020101)	Pelican (73-0118-00)	33%	22.8	Improving trend
South Two River	Ochotto (73-0122-00)	81%	12.6	No evidence of trend
(0701020102)	Kreigle (73-0097-00)	16%	10.9	No evidence of trend

Table 11. Priority lakes for protection as identified in statewide interagency effort.

Mississippi River–Sartell WRAPS Report

HUC-10 subwatershed	Lake name (ID)	Disturbed land use (%)	Mean total phosphorus (µg/L)	Water clarity trend
	Middle Spunk (73-0128- 00)	65%	19.0	Improving trend
	Koop (73-0166-00)	60%	26.1	Insufficient data
Platte River	Peavy (49-0005-00)	6%	10.5	Insufficient data
(0701020104)	Long (49-0015-00)	21%	19.5	No evidence of trend
	Pierz (49-0024-00)	55%	18.5	No evidence of trend
	Kraemer (73-0064-00)	12%	33.6	Declining trend
Watab River	Sagatagan (73-0092-00)	15%	31.3	No evidence of trend
(0701020106)	Big Watab (73-0102-00)	13%	15.1	Improving trend
(0701020106)	Island (73-0104-00)	17%	14.8	Insufficient data
	Achman (73-0125-00)	25%	17.5	Insufficient data
	Anna (73-0126-00)	59%	18.7	Insufficient data

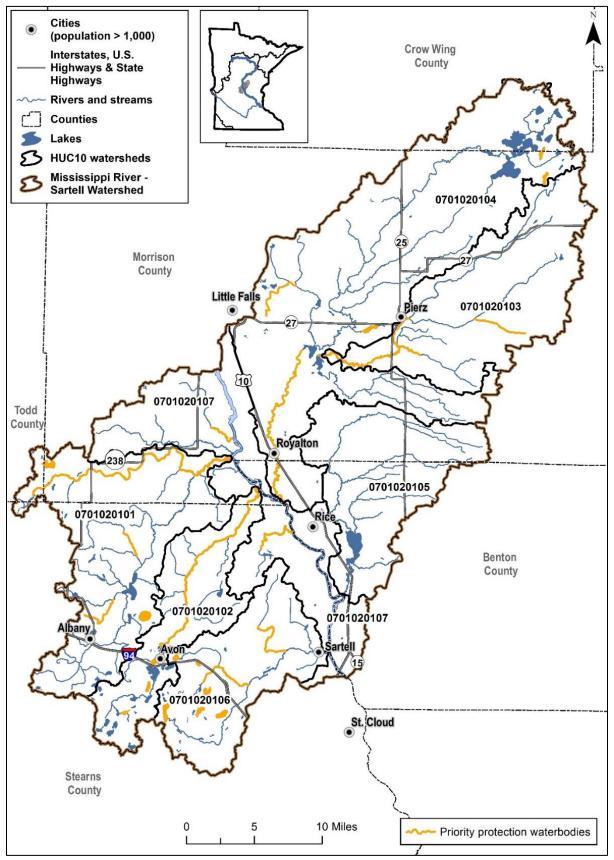


Figure 28. Protection priority waterbodies identified in the MRSW.

2.5.3. Drinking water protection and priority

Residents living within and downstream of the MRSW receive their drinking water from both surface and groundwater sources. As such, it is important to consider all sources of drinking water in protection activities.

The Mississippi River serves as the drinking water supply for the St. Cloud Water Treatment Facility and the Minneapolis Water Treatment and Distribution Services. Approximately 21 billion gallons of water are pumped from the Mississippi River by the Minneapolis Water Treatment and Distribution Services each year. The Mississippi River is also one of the main water supplies for the St. Paul Regional Water Services. As such, restoration and protection of this vital drinking water source is crucial to maintaining public health and safety for many Minnesota residents in addition to keeping the cost of drinking water for the state, St. Cloud, Minneapolis and Saint Paul worked collaboratively to prepare three surface water source water protection plans as part of the Upper Mississippi River Source Water Protection Project. Each plan includes (1) a delineated source water protection area and priorities areas, (2) an inventory of potential point and nonpoint contaminant sources, and (3) a description of management strategies and objectives for implementation.

Priority areas in source water protection plans are delineated based on time of travel for a potential contaminant to reach the intake point and help guide management decisions based on the calculated potential risk to the drinking water source (acute or chronic). A portion of the MRSW is located within the City of St. Cloud Source Water Protection Plan's "Priority Area A" and the remaining area of the watershed lies within "Priority Area B" (Figure 29). In the St. Cloud source water protection plan, Priority Area A is delineated based on an eight-hour travel time of potential contaminants of concern to the intake point. Management in Priority Area A protects users from acute health concerns that could also require closing the intakes. Management in Priority Area B protects water users from chronic health effects. Management in Priority Area B also protects users from contaminants such as pathogens that may be usually found at treatable levels in the source water, but occasionally present an acute health concern. In addition, priority contaminant sources within the City of St. Cloud source water protection area were inventoried, assessed by their ability to influence the surface water intakes, and prioritized for implementation strategies (Table 12).

High priority sources (known	Medium priority sources	Low priority sources (permitted
contaminants)	(potential contaminants)	and regulated)
 Improper manure management/storage sights Known stormwater discharge sites Cropland sediment runoff Streambank erosion Transportation corridors Hazardous waste clean-up sites Failing septic systems Leaking underground storage tanks 	 Gravel and mining Residential lawn management Above ground storage tanks Agriculture chemical and pesticide applicators NPDES permits Underground storage tanks Vehicle salvage yards 	 Wells Permitted feedlots Permitted hazardous waste generators Permitted registered storage tanks Permitted solid waste sites

Table 12. Priority sources in the Source Water Protection Plan for the City of St. Cloud, Minnesota.

In addition, the Minnesota Department of Health (MDH) has developed a ranking system for groundwater sources that supply drinking water to determine vulnerability. The MDH defines drinking water supply management area (DWSMA) vulnerability as an assessment of the likelihood for potential contaminant sources to contaminate a public water supply well based on the aquifer's inherent geologic sensitivity and the chemical and isotopic composition of the groundwater. DWSMA vulnerability is provided in Figure 30.

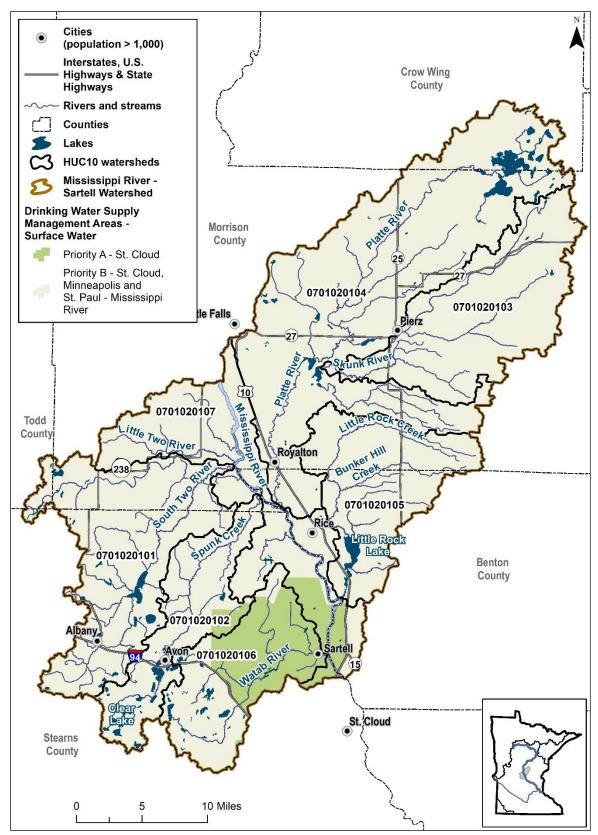


Figure 29. Drinking water supply management areas (DWSMA) for surface water sources.

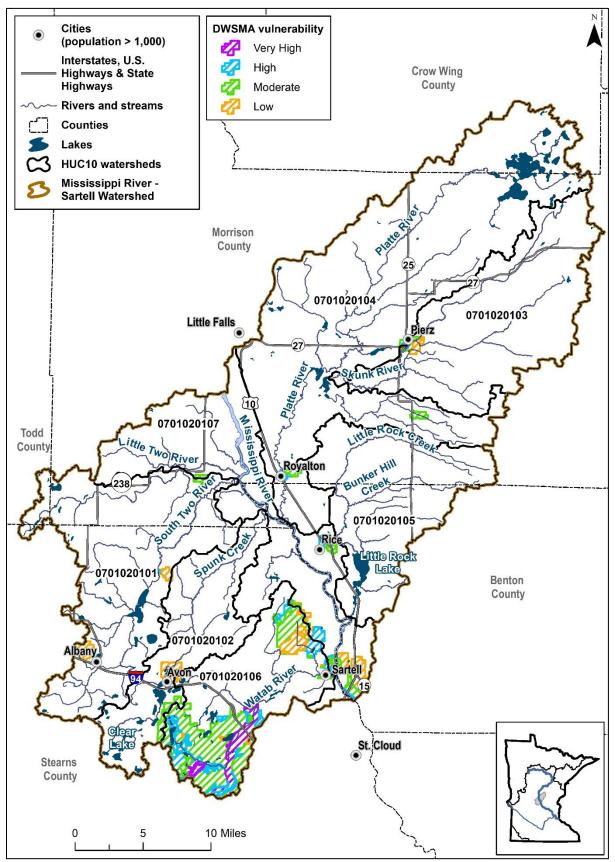


Figure 30. DWSMA vulnerability (MDH).

2.5.4. Groundwater protection considerations

While groundwater is not traditionally addressed by a WRAPS report, groundwater protection should also be considered when determining protection strategies in the MRSW as there is a strong connection between surface and groundwater sources in this watershed. These considerations will be further expanded upon in forthcoming planning efforts.

Groundwater protection will be fully addressed in a Groundwater Restoration and Protection Strategy (GRAPS) report for the MRSW. The MDH coordinates the GRAPS program. Similar to the WRAPS, many state agencies work together to gather data and create GRAPS reports for each watershed in Minnesota. GRAPS reports contain maps and data describing groundwater conditions in the watershed. The reports identify local groundwater concerns and outline strategies and programs to address them.

High capacity water withdrawals

The DNR permits all high capacity water withdrawals in the state where the pumped volume exceeds 10,000 gallons per day or one million gallons per year. Permit holders are required to track water use and report back to the DNR annually. According to the 2016 DNR permitting and reporting systems, the vast majority of water withdrawals in the MRSW are used for agricultural irrigation, 76.4% (MPARS 2016). Water supply is the second highest use of high capacity water withdrawal at 19.9% (Figure 31).

High capacity water withdrawals in the MRSW are a mix of ground and surface water withdrawals as seen in Figure 32; however, groundwater withdrawals have exhibited an increasing trend since 1997 (Figure 33). In addition to an increase in groundwater withdrawals, the DNR also reports an increase in agricultural irrigation, non-crop irrigation, and water supply over the most recent 20 years. For more information on the water permitting and reporting system (MPARS) see: https://www.dnr.state.mn.us/mpars/index.html.

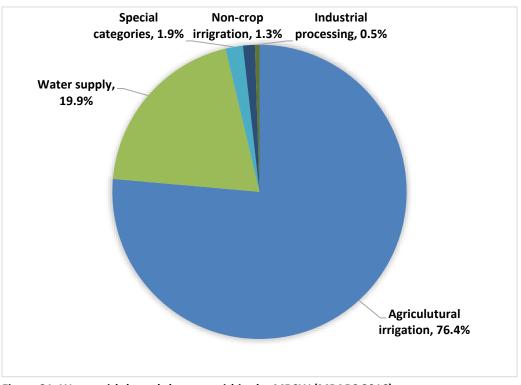


Figure 31. Water withdrawals by type within the MRSW (MPARS 2016).

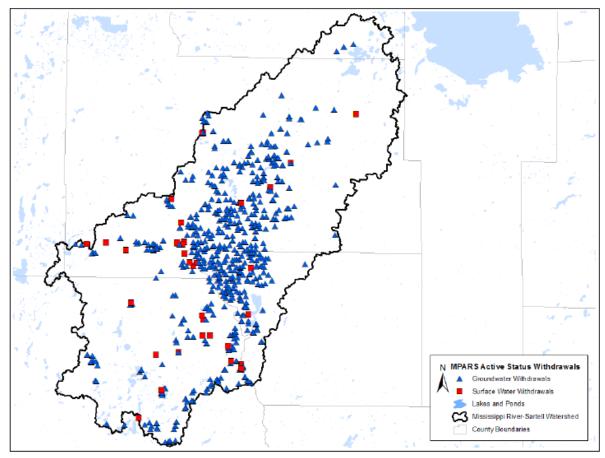


Figure 32. Active status permitted high capacity withdrawals in 2016 (Figure from MPCA 2019a).

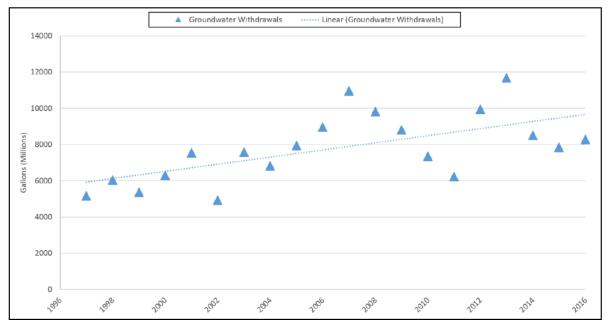


Figure 33. Total annual groundwater withdrawal in the MRSW (1997-2016) (Figure from MPCA 2019a).

Sustainable use of groundwater in the Little Rock Creek Area: A DNR Action Plan

In response to indications that groundwater use is affecting stream flows in Little Rock Creek, the DNR established an action plan for the Little Rock Creek Area (Figure 34) over concerns that total permitted groundwater use in the area is not sustainable and may have a negative impact on Little Rock Creek, an important coldwater trout stream.

The DNR has met with residents, permitted water users, and local government leaders in the Little Rock Creek Area since 2016 to discuss, analyze, and plan for the sustainable and continued use of groundwater in the area. Through those discussions, the DNR developed an action plan. The plan includes a variety of actions the DNR will take through 2022, designed to ensure a sustainable groundwater supply while protecting Little Rock Creek.

Figure 34. Little Rock Creek Area (Image from Minnesota DNR).

On November 17, 2017, the DNR released the public review version of the *Sustainable Use of Groundwater in the Little Rock Creek Area: A Draft Action Plan*. Actions outlined in this draft plan and eventual final version are important for protection considerations in the MRS WRAPS.

More information on the Little Rock Creek Area Action Plan for groundwater use is available at the following website:

https://www.dnr.state.mn.us/waters/groundwater_section/sustainability/lrc/index.html.

Groundwater pollution sensitivity

The DNR completed a statewide evaluation of pollution sensitivity of near-surface materials. Results of this evaluation can be used to estimate pollution vulnerability of groundwater within 10 feet of the land surface. The MPCA 2019a estimates that the MRSW has primarily low to moderate groundwater pollution sensitivity overall; however, a large swatch of high pollution sensitivity is seen along the Mississippi River corridor, due to the presence of sand and gravel quaternary geology (Figure 35). Clear overlap exists between areas of high groundwater pollution sensitivity and the presence of high capacity wells provided in Figure 32.

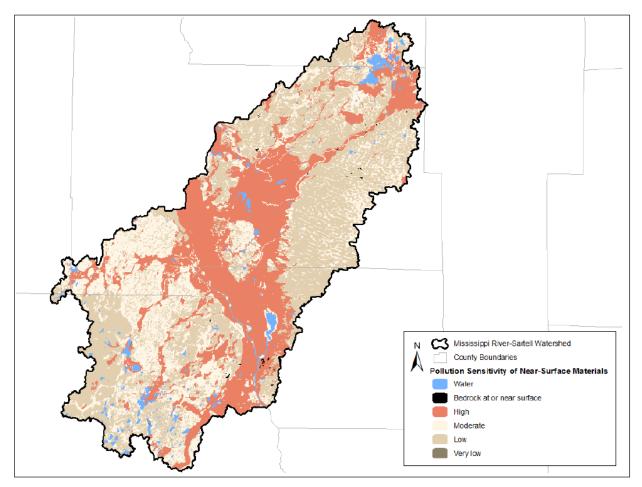


Figure 35. Pollution sensitivity of near surface materials (Image from MPCA 2019a).

3. Prioritizing and implementing restoration and protection

The Clean Water Legacy Act requires that WRAPS reports: identify impaired waters and waters in need of protection; identify biotic stressors causing impairments or threats to water quality; summarize TMDLs, watershed modeling outputs, and resulting pollution load allocations and identify areas with high pollutant-loading rates; and contain strategies that are capable of cumulatively achieving needed pollution load reductions for point and nonpoint sources, including identifying water quality parameters of concern, current water quality conditions, water quality goals, strategies, and targets by parameter of concern, and strategies and an example of the scale of adoptions with a timeline to meet water quality restoration or protection goals.

This section of the report provides the results of such prioritization and strategy development. The implementation strategies, including associated scales of adoption and timelines, provided in this section are the result of watershed modeling efforts and professional judgment based on what is known at this time and, thus, should be considered approximate. Furthermore, many strategies are predicated on needed funding being secured. As such, the proposed actions outlined are subject to adaptive management—an iterative approach of implementation, evaluation and course correction.

Implementation partners

Because many of the nonpoint source strategies outlined in this section rely on voluntary implementation by landowners, land users, and residents of the watershed, it is imperative to create social capital (trust, networks, and positive relationships) with those who will be needed to voluntarily implement BMPs. Thus, effective ongoing civic engagement is fully a part of the overall plan for moving forward. Achieving the goals of this WRAPS will require partnerships and collaboration, in addition to financial resources. Governmental units with primary implementation responsibility include the following entities:

- MPCA
- MDA
- DNR
- MDH
- BWSR
- U.S. Fish & Wildlife Service

- Natural Resources Conservation Service
- Counties (Morrison, Benton, Stearns, Crow Wing, Todd, Mille Lacs)
- Soil and Water Conservation Districts (SWCD)
- Municipalities

These and other agencies will work with private landowners and other project partners to support implementation of the strategies and actions in this WRAPS. In addition, many other partners are anticipated to participate with implementation including:

- Nonprofits (e.g., Trout Unlimited, The Nature Conservatory)
- Chambers of Commerce

- Agricultural Organizations (e.g., Minnesota Soybean Growers, local farmer cooperatives)
- Universities

Business owners

Local lake and river associations, and clubs can provide the grassroots energy and organization to help support WRAPS implementation and can play an integral part in civic engagement activities. The following local associations are active in the MRSW:

- Little Rock Lake Association
- Friends of Two Rivers Lake
- Avon Area of Lakes Association
- Big Watab Lake Association
- Pelican Lake Association
- Kramer Lake Association

3.1. Civic engagement

A key prerequisite for successful strategy development and on-the-ground implementation is meaningful civic engagement. This is distinguished from the broader term 'public participation' in that civic engagement encompasses a higher, more interactive level of involvement. The MPCA has coordinated with the University of Minnesota Extension Service for years on developing and implementing civic engagement approaches and efforts for the watershed approach. Specifically, the University of Minnesota Extension's definition of civic engagement is "Making 'resourceFULL' decisions and taking collective action on public issues

- Upper Spunk Lake Association
- Watab Lake Association
- St. Joe Rod and Gun Club
- Stearns County Coalition of Lake Associations

through processes that involve public discussion, reflection, and collaboration." Extension defines a resourceFULL decision as one based on diverse sources of information and supported with buy-in, resources (including human), and competence. Further information on civic engagement is available at: http://www.extension.umn.edu/community/civic-engagement/. The MRSW is predominantly composed of privately owned land. As such, civic engagement with private landowners is important to the successful watershed restoration and protection efforts.

3.1.1. Upper Mississippi–Brainerd/Sartell Watersheds Civic Engagement Cohort

An Upper Mississippi–Brainerd/Sartell Watersheds Civic Engagement Cohort was sponsored by the MPCA in 2016–2017. This Cohort was provided through a partnership with the University of Minnesota Extension, which provided training. The Cohort complemented the efforts of the MRS WRAPS project through professional training and development of interested watershed partners in becoming civic engagement leaders in their respective watersheds. While the regular training sessions concluded in February 2017, the ongoing goal was to continue communications among Cohort members to help

sustain the system of civic engagement support and information that was developed through the training sessions.

The goals of the Upper Mississippi–Brainerd/Sartell Watersheds Civic Engagement Cohort included:

- Explore and apply civic engagement research, skills, and practices in watershed restoration and protection efforts.
- Expand leadership confidence, capacity, and connections.
- Build a system of support through fellow cohort participants.
- Learn from other cohort participants.
- Reflect and collaborate to further authentic community engagement in the watersheds.

3.1.2. Mississippi River–Sartell Communication Plan

In November of 2017 a communication plan was developed for the Mississippi River–Sartell TMDL and WRAPS development. This communication plan was intended to serve as a working document that first outlined the major steps and actions needed to effectively communicate with key target audiences and among core team members. Local partners may use the plan as a guide for more specific and targeted messaging and incorporate plan elements into their existing communication activities.

The communication plan also identifies the numerous existing organizations involved with education and outreach in the project area and their multiple efforts. Ongoing events include conservation and farm tours for residents and elected officials; creation of materials for homeowners, construction contractors, etc.; conservation events like "Take the Day Off," a collaboration between the Minnesota River Renaissance, Benton and Stearns SWCD, and County Parks with Minnesota DNR that offers participants hands-on instruction in a variety of outdoor activities, education on land use impacts to our natural resources, and an increased awareness of the Mississippi River in central Minnesota; annual tree sales; and groundwater well testing demonstrations and kits.

Notable actions taken during implementation of the communication plan include a monthly civic engagement email, the creation of a Facebook page dedicated to the MRS WRAPS effort, and the continuation of existing communication efforts by local partners. Monthly emails contained information on the events held the previous month, upcoming events, and useful materials for partners to use in their own outreach efforts.

The communication plan is provided in Appendix B. It is an adaptive plan and can be refined and updated as implementation progresses in the watershed.

Elements of the MRSW Communication Plan

Element 1: Goals and Objectives. These are the goals and objectives for involvement and education to support the WRAPS.

Element 2: Partnering Organizations and Communication Subcommittee. This element lists the organizations with potential engagement with the WRAPS and its education, and recommends the formation of a subcommittee to lead initiatives.

Element 3: Key Audience Characterization. This element identifies the priority audiences for each phase of the WRAPS process and provides details on how these audiences will receive information, other existing communication channels, and potential concerns.

Element 4: Tailored Messages. Using information from Element 2, this element identifies messages to help raise awareness, encourage involvement, and promote implementation support. The objective is to create messages for the key target audiences that will resonate and achieve a result.

Element 5: Effective Formats. The information about communication channels in Element 3 will also help to identify effective formats for conveying the messages developed under Element 4.

Element 6: Efficient Delivery Mechanisms. Not all key target audiences get or want their information in the same manner. Some audiences might obtain their information through agency or association newsletters. Others might prefer to attend a meeting or go to a website to learn more. The communication identifies a range of possible delivery mechanisms for distributing the formats with tailored messages to key target audiences.

Element 7: Evaluation Measures. Evaluating the success of the communication plan will be one way to also help measure the success of the WRAPS process. Tracking which stakeholders have played a role in the process and how their perceptions, awareness, and involvement has changed over time will help anticipate who will support implementation recommendations to improve water quality.

3.1.3. Local Partner Team meetings and input

The local partner team for the MRS WRAPS included representatives from the MPCA, DNR, BWSR, TNC, counties, SWCDs, and lake associations. The local partner team met and communicated regularly throughout the WRAPS development.

- April 2017 WRAPS Kick off Meeting in Rice, MN
- February 2018 conference call
- April 2018 Professional Judgement Group meeting to discuss water quality assessments in Little Falls, MN
- November 2018 conference call
- July 2019 Local Partner Team meeting in Little Falls, MN
- September 2019 conference call
- December 2019 Local Partner Team meeting in Little Falls, MN
- June 25th 2020 Microsoft Teams conference video call to discuss full draft WRAPS report

The local partner team provided input throughout WRAPS development. Specifically, local partner team members participated in large format mapping exercises to identify potential areas of concern and opportunity in the watershed, provided guidance on targeted geographic area selection, selected and

modified restoration and protection strategies as needed, and took a survey to identify their top issues and concerns in the watershed. Based on survey results, row crop agriculture, feedlots, source water protection, and altered hydrology were the top issues and concerns for the local partner team. Full survey results are expanded upon in Appendix C. Input received from the local partner team has been incorporated throughout the WRAPS report.

Participants at the April 2017 Kick-off meeting (left) and the July 2019 Local Partner Team meeting (right).

3.1.4. Watershed events and programs

In addition, local partners working in the MRSW held and participated in numerous events throughout the planning process through a variety of programs. These events encourage public interest in water quality, restoration, and protection activities, among others. This public interest in integral to a successful WRAPS report.

- April 2017, Biological and Water Chemistry Monitoring presentations to local organizations by MPCA
- August 2018, Watershed Outreach Day in Rice, Minnesota
- September 2018, Secchi Social in Walker, Minnesota
- Annual County Fairs 2017-2019
- March 2019, Water is Life Workshop at St. John's University
- April 2019, MPCA attendance at the Local Water Plan Task Force meeting for Morrison County
- July 2019, MPCA attendance at Stearns County SWCD Staff meeting to discuss TMDL, WRAPS and 1W1P
- July 2019, Stearns County Shoreline and Watershed Practices Tour
- August October 2019, Little Rock Lake Draw Down and previous community meetings
- September 2019, Conservation Tour in Benton
- November 2019, MPCA attendance at the Benton County Water Resource Advisory Committee meeting

- December 2019, Sustainable Use of Groundwater in the Little Rock Creek Area—Stakeholder meeting
- December 2019, Minnesota Coalition of Lake Associations meeting. Presentations by BWSR and MPCA
- Ongoing, Mississippi River Headwaters Board Aquatic Invasive Species social media campaign
- January 2020, Stearns County Shoreland Training presentations by MPCA and Benton SWCD
- February 2020, Public Meetings in Royalton and Sartell
- March 2020, Stearns County Farmers Fair

Little Rock Lake drawdown 2019 (left, photo from DNR) and the Secchi Social in Walker, Minnesota 2018 (right).

3.1.5. Public Participation and Public notice for comments

Residents of the MRSW were provided the opportunity to give input on the WRAPS prioritization and targeting effort at two public meetings on February 25, 2020, at the Royalton American Legion, and on February 27, 2020, at the Sartell Community Center. Invitations were sent out via a press release, Facebook event invites, and email lists. Attendees of the public meeting were asked to participate in a series of interactive stations set up for them to provide input on the watershed planning process. Several local news reporters were in attendance at the meetings and a write up on the event "Watershed health requires citizen input" was published in <u>The Newsleader</u>. Descriptions of each public meeting station and a brief summary of input received is provided below.

START: State of the watershed. Approximately 45-minute-long presentations were given by the MPCA Project Manager Phil Votruba followed by a question and answer session. The presentation covered the history of the Mississippi River and MRSW, the current water quality and impairments within the watershed, the WRAPS, TMDL, and other applicable planning documents, and next steps.

Station #1: Where in the watershed. Attendees were asked to place star marking their home on large format maps. Attendees live throughout the watershed however there was a higher concentration of homes in and near the city of Sartell, around Little Rock lake, and within the Two Rivers HUC10. Fewer attendees live in the northeastern portion of the watershed. Marked maps from Station #1 are provided in Appendix C.

Station #2: Love your watershed. Attendees were asked to place a heart sticker on natural areas that are important to them. Hearts were placed throughout the watershed. Identified areas include lake shores, parks and areas along the Mississippi River, Little Rock Lake and within the Two Rivers Watershed. Some attendees marked their homes with hearts. Marked maps are provided in Appendix C.

Station #3: Issues and concerns. A total of 20 surveys were submitted between the two events. This survey was previously completed by the local partner team. Row crop agriculture, feedlots, and irrigation and groundwater levels were the three most voted issues and concerns. Local partner team members also selected row crop and feedlots as their top issues and concerns; however, public meeting attendees more often selected issues related to lakes and urban areas than the local partner team members. This difference may be due to the geographic location of public meeting attendees along lake shores and within communities. Full survey results for the public meetings and the local partner team are provided in Appendix C.

Station #4: **Chat with a local water resource expert.** Meeting attendees were able to meet and talk with local water resource

experts working in the watershed. Water resource experts from Benton, Stearns, and Morrison SWCDs, Stearns County, MPCA, and the Crane Meadows Wildlife Refuge were available at this station.

An opportunity for public comment on the draft WRAPS report was provided via a public notice in the *State Register* from September 14, 2020 through October 14, 2020. There were two comment letters received and responded to as a result of the public notice.

3.2. Targeting of geographic areas

The primary purpose of this section is to provide information to support the selection of priority or critical areas for implementation within the MRSW. Three different considerations were used when selecting targeted geographic areas for the MRSW: pollutant load contributions, high quality and at-risk aquatic life, and issues and concerns of the local partner team. County level prioritization, if available, was also included in this section. Information provided in this section can be used to guide targeting efforts in forthcoming planning efforts, such as the future 1W1P.

Areas of disproportionate pollutant loading rates

Upland loading rates of phosphorus, sediment and nitrogen loading were area-weighted by HSPF model catchment and ranked from high to low. Ranks for each pollutant were totaled and ranked from high to low again to calculate a combined pollutant loading rank. Model catchments with the highest overall pollutant loading rank are identified in Figure 36 and can be targeted for restoration actives.

High quality and nearly/barely impaired biological communities

Figure 37 and Figure 38 summarize the IBI data for the MRSW. The gold markers, "High quality (> upper confidence limit)", indicate stream sample locations that are comfortably meeting fish or macroinvertebrate IBI targets for their use (general or exceptional) and can be targeted for protection efforts. The blue markers, "Nearly (> threshold)", indicate stream sampling locations with IBI scores that are close to the targets and are considered threatened of becoming impaired. These streams can be targeted for implementation activities because they are potentially vulnerable to impairment in the future. The pink markers, "Barely (< threshold)", represent stream sampling locations that have IBI scores indicating impairment, but that are higher than the lower confidence limit. These locations can be targeted for implementation activities as they represent the "low hanging fruit" opportunities where not much improvement is needed in IBI scores to remove segments from the impaired waters list.

It is possible that some of the lower scoring monitoring sites are due to physical barriers downstream or application of a target that is not reflective of the stream condition.

Issues and concerns identified by Local Partner Team members

Key areas of concern were identified by local partner team members during large map work sessions for the development of the MRS WRAPS Report. These areas were digitized and provided in Figure 39.

Water and land resources valued by the public

During the public meetings in February of 2020, attendees were asked to place a heart sticker on the locations of natural resources and water bodies that are important to them (**Figure** 40 and Figure 41). These areas can be targeted for implementation activities aimed at public engagement and awareness such as educational campaigns, demonstration projects, and others.

County-level prioritization

Stearns County and Stearns County SWCD staff developed guidance for prioritization of water resource projects within their county to better coordinate between offices. The general guidance for prioritization is as follows:

- Priority should be placed on locations/waterbodies in which implementation of activities will generate the greatest return-on-investment as measured by either pollutant reductions, increases in biological metrics (e.g., IBIs), or another metric that is agreed upon.
- Priority should be placed on projects with multiple benefits. For example, a project that will
 provide additional benefits such as habitat improvements, source water protection or water
 quality improvements may be deserving of higher prioritization compared to a project that
 provides only water quality improvements.
- Previously-completed prioritization efforts should be incorporated as much as possible.
- Many implementation activities will rely on volunteer participation. Therefore, priority should also be given to projects that have a willing landowner or partner.

Stearns County and Stearns County SWCD staff also compiled a list of lakes and streams in which to prioritize implementation efforts within Stearns County. Table 13 summarizes the priority surface waters for Stearns County in the MRSW.

Waterbody	Rationale/notes
All the Spunks, Big Watab and Kreigle Lakes	 These lakes are highly recreational waters whose drainage areas are experiencing development pressure There are several protection efforts already in place with willing participants Active lake associations on Middle Spunk and Big Watab lakes
Pelican and Kraemer Lakes	These lakes have the potential for agriculture pressure to lead to degradation.
Two Rivers Lake	 Lake is highly recreational with a drainage area impacts by agricultural runoff and drainage from tiles Active lake association
Spunk Creek, Watab River, Two Rivers (impaired stream segments)	These streams have segments impaired for <i>E. coli</i> .

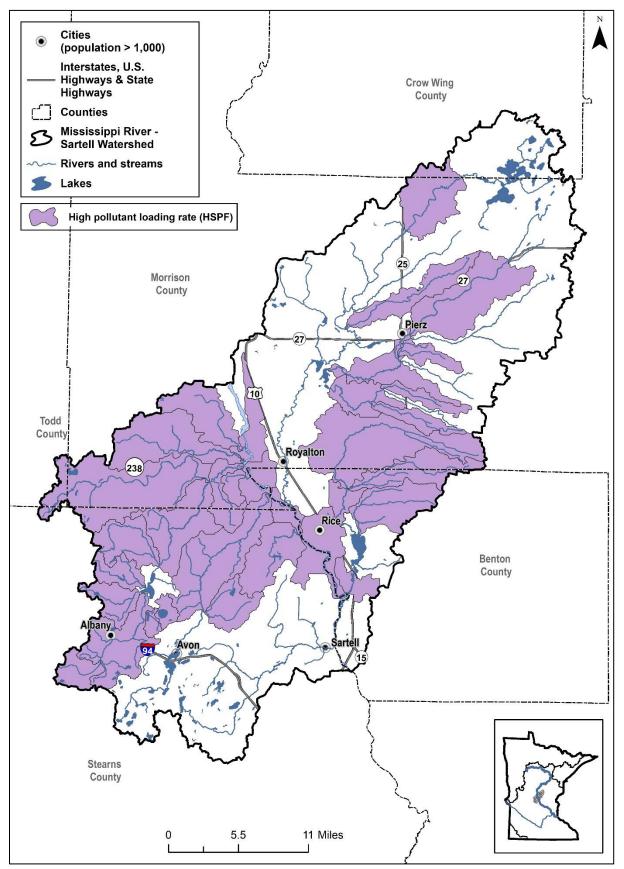


Figure 36. Targeted geographic area: HSPF subwatersheds with high TP, TSS, and TN upland loading rates in the MRSW.

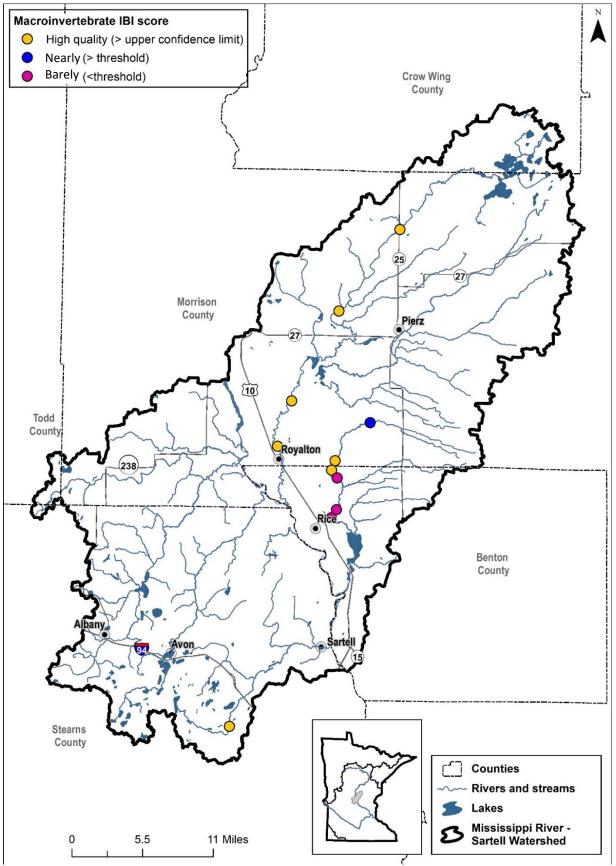


Figure 37. Targeted geographic area: High quality and nearly/barely macroinvertebrate biological communities in the MRSW.

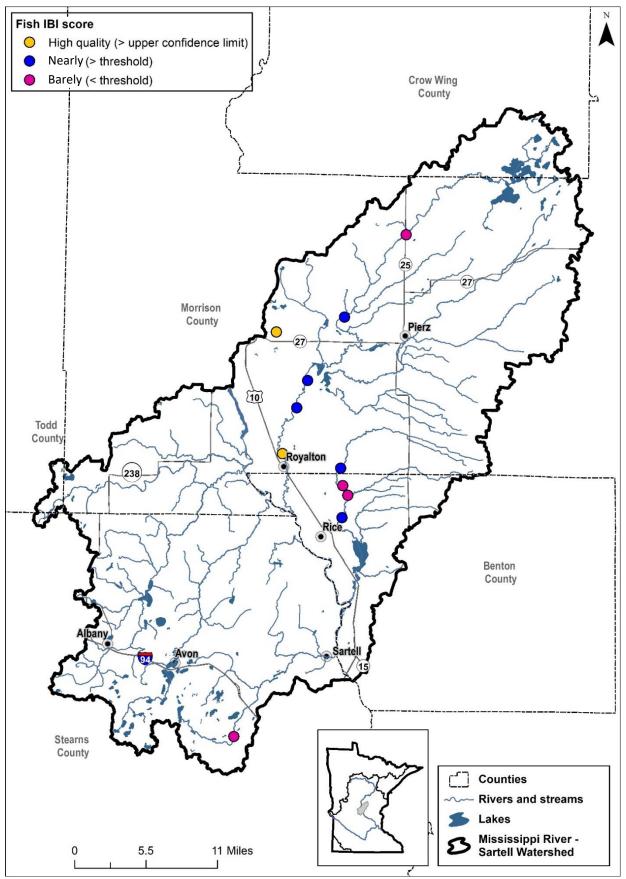


Figure 38. Targeted geographic area: High quality and at-risk fish biological communities in the MRSW.

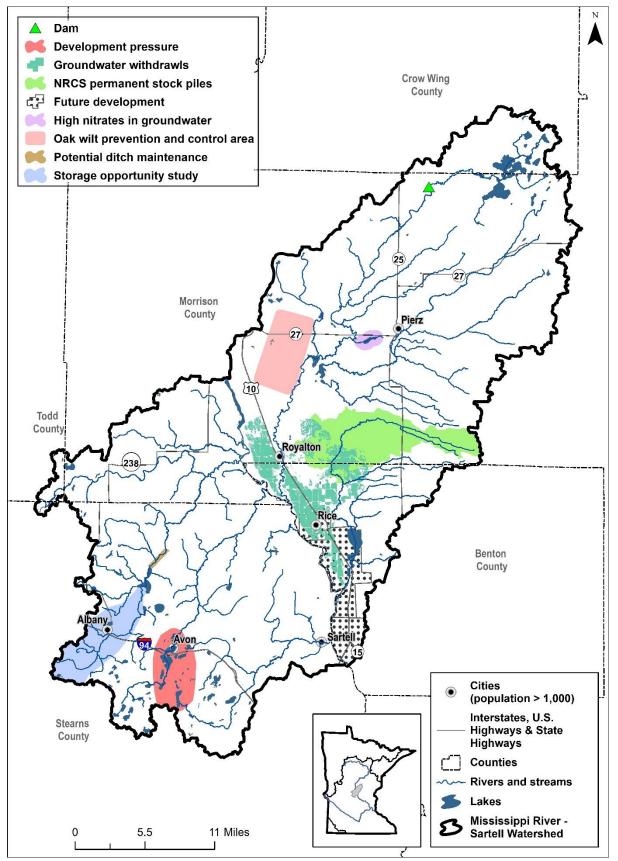


Figure 39. Targeted geographic area: Areas of concern identified by local partner team members in the MRSW.

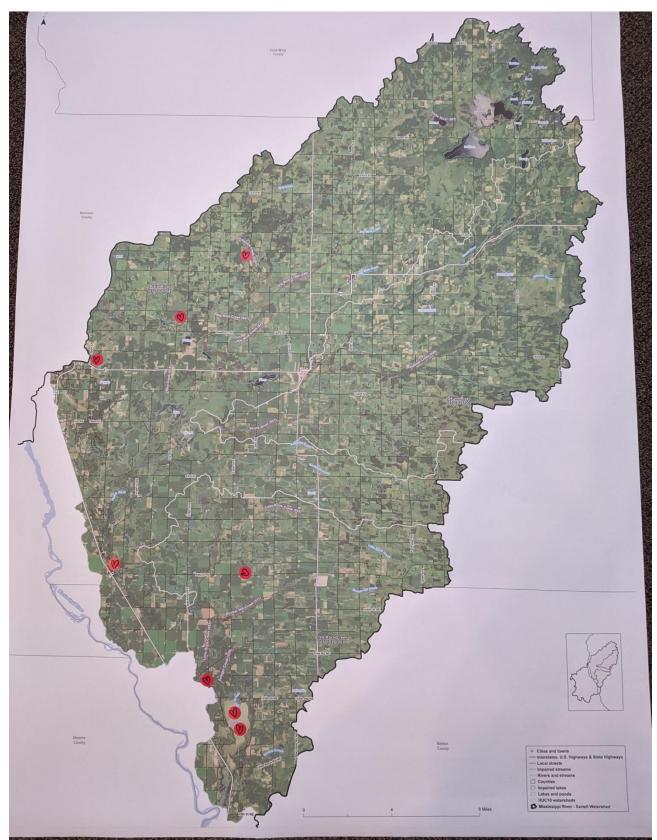


Figure 40. Targeted geographic area: Areas marked as important land and water resources during the February 2020 public meetings, northeastern portion of watershed.

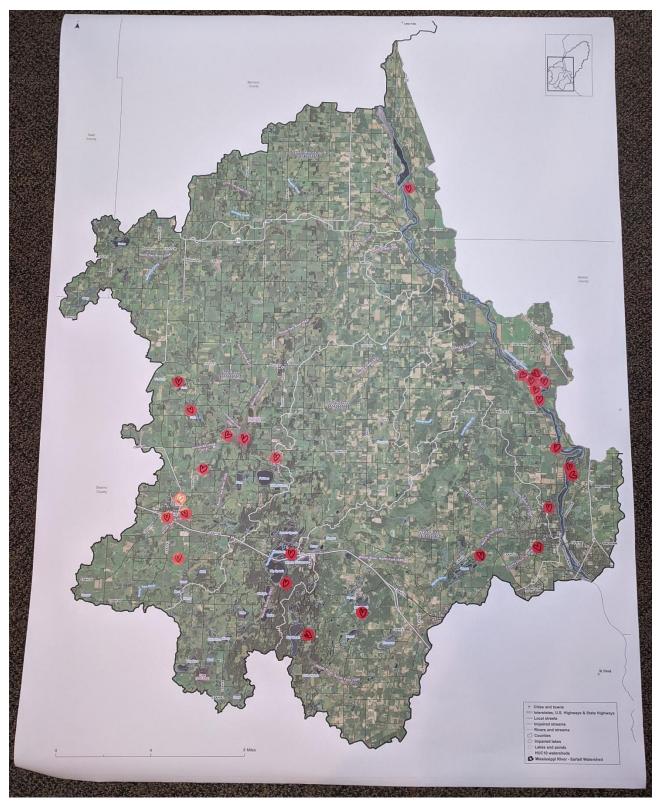


Figure 41.Targeted geographic area: Areas marked as important land and water resources during the February 2020 public meetings, southwestern portion of watershed.

3.3. Restoration and protection strategies

This section provides a summary of implementation strategies for both restoration and protection in the MRSW. The WRAPS strategy tables provide examples of the types of changes for both restoration and protection needed to achieve water quality goals in the MRSW. When appropriate, the table references existing plans for implementation strategies. Rather than reiterate and duplicate previous work, the strategy tables focus on and highlight new information in the project that can be used to expand existing restoration and protection efforts through the adaptive management process.

The strategies implemented in the MRS WRAPS will maximize the impacts of BMPs whenever possible in order to achieve multiple benefits in water quality, soil health, flood management, habitat improvement, and others.

Subsequent local planning steps (i.e., the 1W1P) can take these general examples and describe more specific planning elements for each, such as intended projects and efforts, resource needs, who will be involved, and project timeframes. The WRAPS strategy tables are organized first by watershed wide strategies (Section 3.3.1) that are applicable to all waterbodies within the watershed, followed by strategy tables at the HUC-10 watershed level (Section a).

3.3.1. Watershed wide strategies

A list of general watershed wide strategies is provided in Table 14. Watershed wide strategies were created based on strategies and BMPs provided in the WRAPS template (July 2018) and modified by local partner input. These strategies represent the recommended strategies for the entire HUC-8 watershed and are not limited to impaired waters. Note that this list is not meant to be exhaustive, but to instead provide a fairly comprehensive overview of example BMPs, tools, and plans that are recommended for implementation in the MRSW. This list can be further refined based on location specific conditions and during future planning efforts (e.g., the 1W1P process).

	Watershed wide strategies for the MRSW ^a									
Strategy type	EXAMPLE best management practices, tools, and plans									
	Prioritize wetland restoration, construction for drainage treatment									
	Incorporate usage of tile line bioreactors where appropriate in the watershed									
	Expand education programs to promote usage and acceptance of tile line bioreactors where appropriate in the watershed									
Agricultural tile drainage water treatment and	Map drain tiles, outlets, and intakes for future conservation. Develop tiling inventory and maintain									
inlet protection	Understand and account for cumulative impacts of new and existing tile systems on water quality and quantity									
	Prioritize support for drainage practices which provide multiple benefits and will be adopted									
	Promote alternative tile intake practices									
	Controlled drainage practices									

 Table 14. Watershed wide strategy types (in alphabetical order) and example BMPs for the MRSW.

Mississippi River–Sartell WRAPS Report

	Watershed wide strategies for the MRSW ^a							
Strategy type	EXAMPLE best management practices, tools, and plans							
Buffers - field	Updated ordinances to increase buffers							
	Increase acreage of field borders to complement existing conservation management systems							
edge	Promote upland buffer restoration							
	Saturated buffers							
	Promote vegetated buffers							
	Develop plan for crediting nutrients on nontraditional crops							
	Precision agriculture							
Changing rotations to	Agricultural certification							
less erosive crops	Promote Forever Green program that encourages cover crops, perennial vegetation and providing markets for alternative crops							
	Increase educational opportunities for farmers, including subsidies for certified crop advisors (CCAs)							
	Increase conservation cover through perennials							
	Conservation crop rotation with perennials							
Converting land to perennials	Enhance protection for converted land through conservation easements and reforestation efforts							
pererinais	Increase enrollment in Conservation Reserve Program							
	Implement new perennial cover options							
	Explore new and innovative conservation practices							
Cover crops for living cover in fall/spring	Increase late-season cover plantings with corn and soybeans to reduce sediment loss, improve nutrient uptake							
	Filter strip							
	Add field wind breaks in critical areas (e.g., along highways and other open spaces)							
	Grassed waterway							
Designed	Contour Buffer Strips							
erosion control and trapping	Contour farming							
	Water and sediment control basins in coordination with upland treatment practices							
	Minnesota Agricultural Water Quality Certification Program							
	Stripcropping							
	Sediment basin							
	New in-ditch grade stabilization structures to reduce erosion in county ditches							
Drainage ditch modifications	Inventory ditches to identify areas of high density, consider a ditch density study							
	Incorporate multipurpose drainage							
Drinking water management	Conservation crop rotation with small grains in 10-year time frame of capture zone							

	Watershed wide strategies for the MRSW ^a
Strategy type	EXAMPLE best management practices, tools, and plans
	Implement source water protection planning to watershed planning
	Complete GRAPS and update Geologic Atlas, as needed
	Feedlot runoff reduction/treatment
	Provide funding for small operations to reduce runoff and improve treatment, especially near waters of the state
	Feedlot manure/ runoff storage addition and compliance inspections for participating farms
	Increase rainwater diversion practices
	Improve inter-agency coordination of feedlot inspections and record keeping requirements
Feedlot runoff	Feedlot relocation/ retirement
controls	Promote practices that reduce stocking density
	Total confinement facilities (concreted and roofed)
	Feed storage in silos/grain bins or on impervious surfaces
	Storage of process wastewater in tank/manure pits
	Improved record keeping and mapping of existing risks
	Improve process/regulations for siting of stockpiles. Ensure that soil type and quality are considered
	Conduct or expand upon county culvert inventories to identify connectivity issues, beginning in upland areas
Liebitet and	Wildlife habitat management (upland and aquatic habitat)
Habitat and stream connectivity	Develop rebate program for integrated pest management
management	Modify and replace dams culverts and fish passage barriers
	Properly site and position culverts to allow for aquatic organism passage
	Protection of vulnerable ecosystems and habitats
	Create minimum impact design standards for future development along lakeshores
	Develop and implement shoreline ordinance updates
Lake	Native shoreline restoration
management	Educate residents to increase awareness of BMPs and low impact development (LID) for future developments
	Encourage formation of lake association or similar homeowner and lake user organization

	Watershed wide strategies for the MRSW ^a								
Strategy type	EXAMPLE best management practices, tools, and plans								
	Increase staffing, local capacity, and regional coordination for manure and nutrient management inspections								
	Reduced application/ application on select sites								
	Nutrient Management - rate, form, placement, timing. Including reduced application, wetland stream avoidance, improve practices of application timing (e.g., no fall nitrogen application)								
	Soil testing prior to fertilizer application/plantings								
Nutrient management (cropland)	Provide resources to CCAs regarding soil health practices such as an underwritten CCA program and subsidies								
(Continue the development of new mapping and data collection tools for measuring land application rates, especially on small farms.								
	Develop free nitrate testing program or clinic								
	Whole farm planning								
	Encourage small and non-NPDES sites to develop manure management plans								
	Prioritize context for manure/ fertilizer incorporation and injection, as weather allows.								
	Improve record keeping practices								
	Conversion of conventional pasture to prescribed rotational grazing								
	Support pasture improvement and silvopasture								
Pasture management	Exclusion fencing and livestock access control in and near streams, lakes, and wetlands and support alternate water supply, especially on small operations								
	Promote practices that reduce stocking density								
	Improve coordination of smaller facilities with local ordinances related to hose pumps, dugouts, and wells								
Tillage/	Improve residue management in contour areas								
residue management	Conservation tillage								
-	Incentivize adoption of no-till practices								
Rural water storage and	Improve practices of tile water storage for re-use on crops								
irrigation water conservation	Develop set-aside water storage area program								
	Irrigation water management								
Septic system improvements	Improve SSTS compliance inspections								

Mississippi River–Sartell WRAPS Report

	Watershed wide strategies for the MRSW ^a							
Strategy type	EXAMPLE best management practices, tools, and plans							
	SSTS ordinance development and updates, Stearns County has a local example							
	Improve failing SSTSs							
	Ordinance development and improved regulation of SSTS sludge land application							
	Conduct risk assessment of SSTS							
	Re-meander channelized stream reaches in select areas							
	Develop and implement shoreline ordinance updates							
	Increased education of benefits of streambank restoration to discourage variances from ordinance							
Stream restoration and	Educate residents to increase awareness of BMPs and LID for future developments							
stabilization	Promote natural channel design principles for stream restorations							
	Promote critical area plantings							
	Restore floodplains and reconnect with channel							
	Implement the Mississippi Headwaters Board Comprehensive Plan for zoning protection: https://www.mississippiheadwaters.org/files/regmanagement/2019%20final%20draft%20mhb%2 0comp%20plan.pdf							
	Prioritize wetland restoration, construction for treatment of urban runoff							
	Create long-term education and outreach plan for stormwater management. Topics can include impacts of different stormwater BMPs, lawn maintenance alternatives, and street sweeping							
	Develop BMP guidebook for residents							
Urban	Develop reverse fee system to fund and incentivize local stormwater BMPs							
stormwater runoff control	Increase all stormwater practices to meet TMDL and permit conditions and tie TMDL compliance into stormwater planning, as appropriate							
	Create enhanced spill response, emergency response plan							
	Continue to improve outreach and education plan for increasing stormwater BMP/LID, including development of demonstration projects							
	Plan for climate change impacts in future stormwater planning efforts							
	Improve urban irrigation water management via smart irrigation, or similar							

	Watershed wide strategies for the MRSW ^a								
Strategy type	EXAMPLE best management practices, tools, and plans								
	Promote bioretention, bioinfiltration basins, rain gardens, and constructed stormwater ponds								
	Enhance chloride and road salt management including; direct engagement with salt applicators, increased monitoring and mapping to determine key issues; and free clinics and/or testing for private application of salt and water softeners.								
	Promote MPCA's Smart Salting Certification program for property managers and applicators								
	Consider rebate program for water softener replacement								
	Educate private citizens on proper salt application and water softener upgrades								
	Regulate or limit impervious surfaces and allowable mitigation in new development								
	Identify nonbuildable areas due to erosion and potential level of impact of new development, limit new development in these areas								
	Stormwater Retrofit analysis								
	Improve stormwater ordinances in rural communities and subdivisions including bluff definitions and regulations of topographic and vegetative alterations								
	Develop supplemental street sweeping plan								

a. This list is not meant to be exhaustive but to instead provide a fairly comprehensive overview of example BMPs, tools, and plans that are recommended for implementation in MRSW. This list can be further refined based on location-specific conditions and during future planning efforts (e.g., the One Watershed, One Plan process (1W1P).

3.3.2. Restoration and protection strategies by subwatershed

The following sections outline the contents of the MRS WRAPS restoration and protection strategy tables by subwatershed (HUC10) and are organized by strategy table column.

Waterbody and location

Waterbody-specific rows are provided for all impaired segments and segments with specific protection strategies recommended by the local partner team or previous water quality studies. Strategies for impaired waterbodies, or restoration strategies, are shown in light red cells. Watershed-wide strategies, or strategies applicable to the entire subwatershed are shown in the white cells at the top of each table. Current water quality conditions were determined using water quality information from previous TMDLs and results from the MPCA's intensive monitoring efforts in the MRSW.

Water quality goals

Waterbody-specific goals are set for the individual impairments in the watersheds. Final water quality goals for pollutant-impaired streams are provided in TMDL documents (Benton SWCD 2011, Benton SWCD 2015, MPCA 2014, Tetra Tech 2020). Final water quality goals for biota impairments were

determined using the applicable fish biocriteria (mIBI and/or fIBI score) necessary to obtain the aquatic life use goals for each waterbody. Goals for biota impairments are supported by the SID report. Measures of implementation progress for specific waterbodies are not required to be included in WRAPS reports, and were determined by local partner team members.

Strategies to achieve final water quality goals

Final water quality goals include maintaining current conditions for unimpaired waterbodies and meeting water quality standards for those waterbodies that are impaired.

Waterbody-specific restoration and protection strategies are provided in Table 15 through Table 21 by individual HUC-10 subwatersheds. Corresponding maps for each HUC10 are provided in Figure 42 through Figure 48. Waterbody-specific strategies were developed using the information provided by local partner team members, recommended strategies in Table 14, and from information provided in Mississippi River–Sartell TMDL (Tetra Tech 2020), the Little Rock Lake and Creek Watershed Protection Improvement Plan (Benton SWCD 2013), the Upper Mississippi River Bacteria TMDL Implementation Plan (MPCA 2016), the Mississippi River–Sartell Watershed Stressor Identification Report (MPCA 2019a), and the Action Plan for Sustainable Groundwater Use in the Little Rock Creek Area (DNR 2018) for impaired stream reaches and lakes in the watershed.

Example BMP scenarios for phosphorus, DO, and nitrogen-related BMPs were determined using information from existing reports, or as provided in the HSPF-SAM recommended removal efficiencies. A similar tool to estimate scale of adoption specific to *E. coli* related BMPs in Minnesota is not currently available, therefore a qualitative approach based on previous TMDL sources assessments was used to determine scales of adoption for *E. coli* BMPs. Strategies for many of the biota impairments were also done in a qualitative fashion because they do not have a specific pollutant load reduction from a TMDL, or the stressor (e.g., degraded habitat) does not have an associated pollutant. Adaptive management can be used to determine scale of adoption necessary to achieve *E. coli* reductions and address nonpollutant-based, biological stressors.

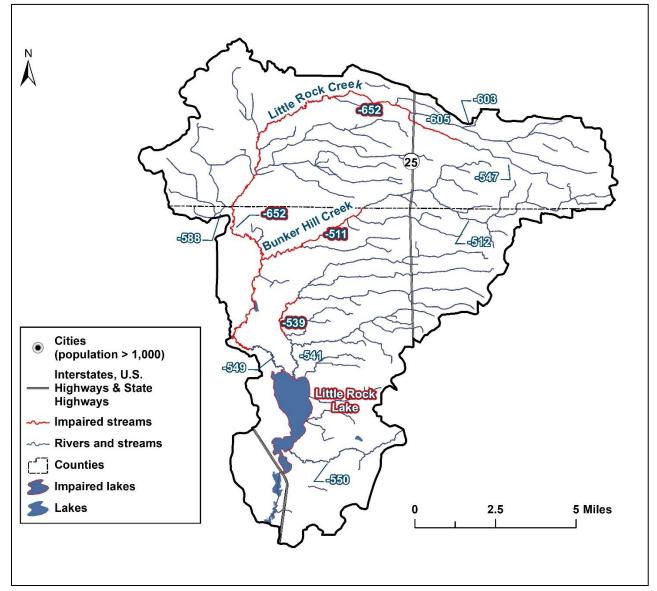


Figure 42. Little Rock Lake Subwatershed (0701020105). See Table 15 for corresponding restoration and protection strategies.

					Little Roc	k Creek (07010201	05)				
	Water quality						Strategies to achiev	e final wate	er quality	goal	
	Leastien						EXAMPL	E BMP Sce	nario		Notes
Waterbody (ID)	Location and upstream influence counties	Pollutant/ stressor	Current WQ conditions	Milestone (optional)	Final WQ goal	Strategy type	ВМР	Amount	Unit	Estimated reduction (lb/yr) as applicable	
					Implement s	strategies and BMPs	listed in the watershed wide	table, as ap	plicable.		
				Implement	t the 5-year acti	ion plan for sustainal	ble groundwater use in the Li	ttle Rock Cr	eek Area (DNR 2018)	
							Regulate or limit impe mitigation in	rvious surfa n new develo		llowable	
All	Benton, Morrison	- · · · · · · · · · · · · · · · · · · ·	See Table 2 and Table 3	U	rban stormwate	er control	Identify nonbuildable areas of impact of new develop th				See Figure 39 for areas of future
							Improve stormwater ordinances in rural communities and subdivisions including bluff definitions and regulations of topographic and vegetative alterations				development
			ivity, flow on, fIBI 15 - 16; mIBI 13 - 30		fIBI 35; mIBI 32	Stream restoration and	Re-meander channelized tributaries to Bunk Hill Creek using natural stream design	-	-	-	
				TBD during 1W1P		stabilization	Addressed undercut banks and incised channel condition	-	-	-	BMPs selected based on
Bunker Hill Creek (-511)	Benton, Morrison					Habitat and stream connectivity management	Riparian tree planting to provide shade	-	-	-	analyses provided in the MRS stressor identification report. See
		Nitrate	Nitrate See Figure 7 of WRAPS		33% and 19% reduction under most and mid- range flow conditions, respectively	Implement the Little Rock Creek TMDL recommendations (SWCD 2015)				Figure 81 of the stressor identification report.	

Table 15. Restoration and protection strategies for the Little Rock Creek Subwatershed (0701020105).

					Little Roc	k Creek (07010201)	05)				
			Water qu	ality			Strategies to achiev	e final wate	er quality	goal	
Waterbody (ID)	Location and upstream influence counties	Pollutant/ stressor	Current WQ conditions	Milestone (optional)	Final WQ goal	Strategy type	EXAMPLI	E BMP Sce	nario Unit	Estimated reduction (Ib/yr) as applicable	Notes
		Longitudinal				Stream restoration and stabilization	Address channel widening and streambank erosion using natural design	-	-	-	
Zuleger Creek (- 539)		connectivity, streamflow alteration, habitat	fIBI 26; mIBI 35		fIBI 42; mIBI 37	Habitat and stream	Reintroduce woody debris and coarse substrate to improve habitat	-	-	-	BMPs selected based on
						connectivity management	Modify or replace CR12 crossing for fish passage	-	-	-	analyses provided in the MRS stressor identification report. See Figure 81 of the stressor Identification
		Streamflow	teration, fIBI 15-22	TBD during 1W1P	fIBI 42	Stream restoration and stabilization	Addressed undercut banks and incised channel condition	-	-	-	
Little Rock						Habitat and stream connectivity management	Restore floodplain	-	-	-	
Creek (-652)	Benton, Morrison DO	· · · ·					Restore riffle and pool habitat	-	-	-	report.
		DO	Total oxygen consumption load: 327.5 kg/day		52% reduction in total oxygen demand	Implement the Lit	tle Rock Creek TMDL recomr	Carry forward impairment from 07010201- 548.			
Little Rock Creek		Temperature, streamflow fIBI 5 - 40; alteration, mIBI 9 - 71 habitat			fIBI 35;		Address embedded coarse substrate throughout stream system	-	-	-	BMPs selected based on
(-653)				nBI 33, mIBI 43; 1% reduction in thermal loading	Habitat and stream connectivity management	Addressed undercut banks and incised channel condition	-	-	-	analyses provided in the MRS stressor identification report. See Figure 81 of the SID.	

					Little Roc	k Creek (07010201	05)								
			Water qu	ality			Strategies to achiev	e final wate	er quality	goal	-				
	Location and upstream influence counties						EXAMPLE BMP Scenario				Notes				
Waterbody (ID)		Pollutant/ stressor	Current WQ conditions	Milestone (optional)	Final WQ goal	Strategy type	ВМР	Amount	Unit	Estimated reduction (Ib/yr) as applicable					
							Address permanent manu Creek watershed to en ma								
							Feedlot runoff reduction/treatment	High	-	unknown					
		Benton, <i>E. coli</i> geomean: du	<i>E. coli</i> geomean: 1,344	TBD during 1W1P	Maximum monthly geomean 126 org/100mL; 91% reduction		Provide funding for small operations to reduce runoff and improve treatment, especially near waters of the state	High	-	unknown					
							Feedlot manure/ runoff storage addition	High	-	unknown	See Figure 39 for permanent stock pile				
Little Rock Creek (-653)	Benton, Morrison					Feedlot runoff controls	Increase rainwater diversion practices	High	-	unknown	areas.				
(continued)	Morrison							Improve inter-agency coordination of feedlot inspections and record keeping requirements	High	-	unknown	impairment from 07010201- 548.			
												Feedlot relocation/ retirement	High	-	unknown
								Promote practices that reduce stocking density	High	-	unknown				
							Total confinement facilities	High	-	unknown					
					Feed storage in silos/grain bins or on impervious surfaces	High	-	unknown							

					Little Roc	k Creek (07010201	05)				
	Water quality						Strategies to achiev	e final wate	r quality	goal	
	Location						EXAMPL	E BMP Scei	nario		Notes
Waterbody (ID)	and upstream influence counties	Pollutant/ stressor	Current WQ conditions	Milestone (optional)	Final WQ goal	Strategy type	ВМР	Amount	Unit	Estimated reduction (lb/yr) as applicable	
						Feedlot runoff	Improved record keeping and mapping of existing risks	High	-	unknown	
				TBD during 1W1P c	Maximum monthly geomean 126 org/100mL; 91% reduction	controls (continued)	Improve process/regulations for siting of stockpiles. Ensure that soil type and quality are considered	High	-	unknown	
			Maximum				Improve subsurface sewer treatment systems (SSTS) compliance inspections	High	-	unknown	
Little Rock							SSTS ordinance development and updates	High	-	unknown	
Creek (-653)	Benton, Morrison	E. coli	monthly geomean: 1,344			126 Septic system /100mL; improvements 91%	Improve failing SSTSs	Low	-	unknown	
(continued)		org/100mL					Ordinance development and improved regulation of SSTS sludge land application	Low	-	unknown	
							Conduct risk assessment of septic systems	Low	-	unknown	
							Improve septic systems	Low	-	unknown	
						Pasture management	Conversion of conventional pasture to prescribed rotational grazing	High	-	unknown	
							Support pasture improvement and silvopasture	High	-	unknown	

					Little Roc	k Creek (07010201	05)				
			Water qu	ality			Strategies to achieve	e final wate	r quality	goal	
	Leastion						EXAMPLE BMP Scenario				Notes
Waterbody (ID)			Current WQ conditions	Milestone (optional)	Final WQ goal	Strategy type	BMP	Amount	Unit	Estimated reduction (Ib/yr) as applicable	
		E. coli	Maximum monthly geomean: 1,344 org/100mL	TBD during 1W1P	Maximum monthly geomean 126 org/100mL; 91%	Pasture management (continued)	Exclusion fencing and livestock access control in and near streams, lakes, and wetlands and support alternate water supply, especially on small operations	High	-	unknown	
Little Rock Creek (-653)	Benton, Morrison		org/100mL		reduction		Promote practices that reduce stocking density	High	-	unknown	
(continued)		Nitrate	4.4 – 11.6 mg/L NOX from 2105- 2016 intensive monitoring		47% and 29% reduction under dry and low flow conditions, respectively	Implement the Lit	tle Rock Creek TMDL recomr	nendations	(Benton S	WCD 2015)	
Little Rock Lake (05-0013- 00)		Nutrients	186 ppm from 1991-2009 monitoring data		53%; 99 lb/year reduction	Implement the L	ittle Rock Lake TMDL recomn and 2013)	nendations (Benton S	WCD 2011	

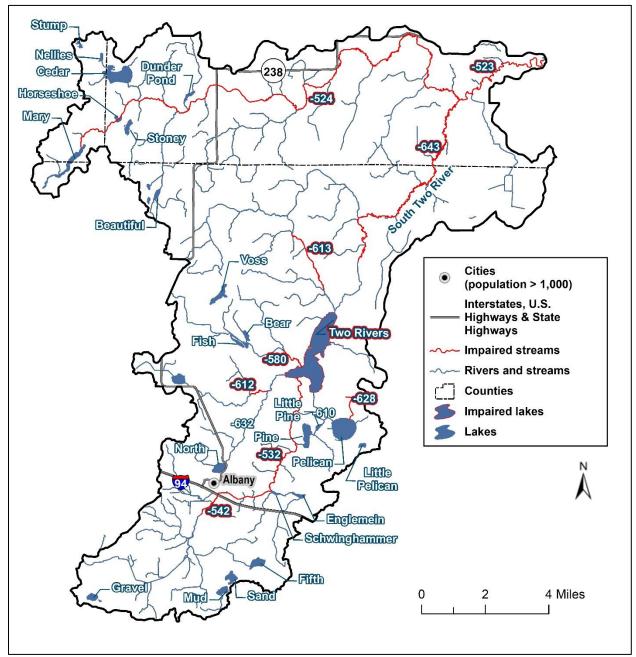


Figure 43. Two Rivers Subwatershed (0701020101). See Table 16 for corresponding restoration and protection strategies.

					Two R	iver (0701020101)					
			Water q	juality			Strategies to achie	eve final wa	ter quality	r goal	
	Location				5. 1940		EXAMP	LE BMP Sc	enario	F atiwated	
Waterbody (ID)	and upstream influence counties	Pollutant/ stressor	Current WQ conditions	Milestone (optional)	Final WQ goal	Strategy type	ВМР	Amount	Unit	Estimated reduction (lb/yr) as applicable	Notes
					Implement st	rategies and BMPs	listed in the watershed wide	e table, as a	pplicable.		
All	Morrison, Stearns, Todd	All	See Table 2 and Table 3		Restore historical wetlands that have been lost, focusing on those within floodplains.						
Two River (-523)	Morrison	E. coli	Maximum monthly geomean: 395 org/100 mL		Maximum monthly geomean Implement priority actions for the Two River subwatershed provided in the Upper org/100mL; flow regime reductions: 0-82%						
South Two River (-532)	Stearns	DO	Insufficient information		-	Develop disso	olved oxygen TMDL and im	plement acti	ons when	complete	
South Two	Morrison,	E. coli	See Figure 6-13 in MPCA 2016	TBD during 1W1P	Maximum monthly geomean 126 org/100mL; flow regime reductions: 18-90%		v actions for the South Two ppi River Bacteria TMDL In				This reach is a carry forward impairment from 07010201- 543.
River (-643)	Stearns		fIBI 38 - 43	Habitat and stream							BMPs selected based on analyses
		Habitat		fIBI 47 stream connectivity management Further investigate cause of poor habitat to determine if it is due to anthropogenic activity							provided in the MRS stressor identification report

Table 16. Restoration and protection strategies for the Two River Subwatershed (0701020101).

					Two R	iver (0701020101)								
			Water q	uality			Strategies to achie	eve final wat	er quality	/ goal				
Waterbody (ID)	Location and upstream influence counties	Pollutant/ stressor	Current WQ conditions	Milestone (optional)	Final WQ goal	Strategy type	ВМР	LE BMP Sce Amount	enario Unit	Estimated reduction (Ib/yr) as	Notes			
						Point source control	Meet/maintain NPDE	S permit limi	t per MRS	applicable	No reductions required in the MRS TMDL			
							Feedlot runoff reduction/treatment	High	-	unknown				
North Two	River		Maximum		Provide funding for small operations to reduce runoff and improve treatment, especially near waters of the state	High	-	unknown						
North Two River (-524)			geomean: 1,666		monthly geomean: 126 org/100		Feedlot manure/ runoff storage addition	High	-	unknown				
					mL; 92% reduction	n Feedlot runoff m controls	Increase rainwater diversion practices	High	-	unknown				
and	Morrison, Stearns, Todd	E. coli	Maximum	TBD during 1W1P	Maximum monthly		Improve inter-agency coordination of feedlot inspections and record keeping requirements	High	-	unknown				
South Two			monthly geomean:		geomean: 126 org/100		Feedlot relocation/ retirement	High	-	unknown				
River (-542)			2,561 org/100 mL		mL; 75% reduction	mL; 75%	mL; 75%	mL; 75%		Promote practices that reduce stocking density	High	-	unknown	
							Total confinement facilities	High	-	unknown				
								Feed storage in silos/grain bins or on impervious surfaces	High	-	unknown			
						Storage of process wastewater in tank/manure pits	High	-	unknown					

					Two R	iver (0701020101)					
			Water q	juality			Strategies to achie	eve final wat	er quality	/ goal	
	Location						EXAMP	LE BMP Sce	enario	_	
Waterbody (ID)	and upstream influence counties	Pollutant/ stressor	Current WQ conditions	Milestone (optional)	Final WQ goal	Strategy type	ВМР	Amount	Unit	Estimated reduction (Ib/yr) as applicable	Notes
						Feedlot runoff	Improved record keeping and mapping of existing risks	High	-	unknown	
		Movimum			controls (continued)	Improve process/regulations for siting of stockpiles. Ensure that soil type and quality are considered	High	-	unknown		
North Two River (-524)			Maximum monthly geomean:		Maximum monthly geomean:		Improve subsurface sewer treatment systems (SSTS) compliance inspections	High	-	unknown	
(continued)	Morrison,	1,666 org/100 mL	TBD	126 org/100 mL; 92% reduction	Contin custom	SSTS ordinance development and updates	High	-	unknown		
and	Stearns, Todd	E. coli		during 1W1P		Septic system improvements	Improve failing SSTSs	Low	-	unknown	
South Two	Todu		Maximum monthly		Maximum monthly	nly ean: //100 5%	Ordinance development and improved regulation of SSTS sludge land application	Low	-	unknown	
(-542) (continued)	River (-542)		geomean: 2,561 org/100 mL		126 org/100 mL;75% reduction		Conduct risk assessment of septic systems	Low	-	unknown	
							Improve septic systems	Low	-	unknown	
				Pasture management	Conversion of conventional pasture to prescribed rotational grazing	High	-	unknown			
						,	Support pasture improvement and silvopasture	High	-	unknown	

					Two R	iver (0701020101)					
			Water q	uality			Strategies to achie	eve final wat	er quality	/ goal	
Waterbody (ID)	Location and upstream influence counties	Pollutant/ stressor	Current WQ conditions	Milestone (optional)	Final WQ goal	Strategy type	ВМР	LE BMP Sce Amount	enario Unit	Estimated reduction (Ib/yr) as	Notes
North Two River (-524) (continued) and	d) Morrison, Stearns, <i>E. coli</i>		Maximum monthly geomean: 1,666 org/100 mL	TBD	Maximum monthly geomean: 126 org/100 mL; 92% reduction	n: 00 6 n Pasture management (continued)	Exclusion fencing and livestock access control in and near streams, lakes, and wetlands and support alternate water supply, especially on small operations	High	-	applicable unknown	
South Two	,	E. coli		during 1W1P	Maximum		Promote practices that reduce stocking density	High	-	unknown	
River (-542) (continued)		Maximum monthly geomean: 2,561 org/100 mL		monthly geomean: 126 org/100 mL;75% reduction		Improve coordination of smaller facilities with local ordinances related to hose pumps, dugouts, and wells	High	-	unknown		
Unnamed		Maximum monthly				Feedlot runoff reduction/treatment	High	-	unknown		
creek (- 580) and Unnamed			geomean: 318 org/100 mL Maximum monthly		126 org/100 mL; 60% reduction 126 org/100		Provide funding for small operations to reduce runoff and improve treatment, especially near waters of the state	High	-	unknown	
creek (- 612)			geomean: 2,033	TOD	mL 94% reduction		Feedlot manure/ runoff storage addition	High	-	unknown	
and	Stearns	E. coli	org/100 mL Maximum	TBD during 1W1P	126 org/100	Feedlot runoff controls	Increase rainwater diversion practices	High	-	unknown	
Krain Creek (- 613)		Maximum 1W1P monthly geomean: 406 org/100 mL Maximum monthly		mL 69% reduction		Improve inter-agency coordination of feedlot inspections and record keeping requirements	High	-	unknown		
and Unnamed				126 org/100 mL	0 mL	Feedlot relocation/ retirement	High	-	unknown		
creek (-628)		geomean: 372 org/100 mL	66% reduction		66%	Feedlot manure/ runoff storage addition	High	-	unknown		

					Two R	iver (0701020101)						
			Water q	uality			Strategies to achie	eve final wat	er quality	/ goal		
Waterbody	Location and upstream	Pollutant/	Current WQ conditions	Milestone (optional)	Final WQ goal	Strategy type	EXAMP	LE BMP Sce	enario	Estimated reduction	Notes	
(ID)	influence counties	stressor					BMP	Amount	Unit	(lb/yr) as applicable		
							Increase rainwater diversion practices	High	-	unknown		
Uppamod			Maximum				Improve inter-agency coordination of feedlot inspections and record keeping requirements	High	-	unknown		
creek (- 580)			monthly geomean:				Feedlot relocation/ retirement	High	-	unknown		
(continued)			318 org/100 mL		126 org/100 mL; 60%		Promote practices that reduce stocking density	High	-	unknown		
and Unnamed creek (- 612)		arns E. coli	Maximum monthly geomean: 2,033		reduction	Feedlot runoff	Total confinement facilities	High	-	unknown		
					126 org/100 mL 94% reduction	controls (continued)	Feed storage in silos/grain bins or on impervious surfaces	High	-	unknown		
(continued) and	Stearns		org/100 mL	TBD during			Storage of process wastewater in tank/manure pits	High	-	unknown		
Krain Creek (-			Maximum monthly geomean:	1W1P	126 org/100 mL 69% reduction		Improved record keeping and mapping of existing risks	High	-	unknown		
		Maximum Maximum monthly geomean: 372 org/100 mL	geomean: 406 org/100 mL Maximum		reduction 126 org/100 mL 66% reduction Septic syste improvemen	126 org/100 mL 66%		Improve process/regulations for siting of stockpiles. Ensure that soil type and quality are considered	High	-	unknown	
			geomean: 372 org/100			Sentic system	Improve subsurface sewer treatment systems (SSTS) compliance inspections	High	-	unknown		
						improvements	SSTS ordinance development and updates	High	-	unknown		
							Improve failing SSTSs	Low	-	unknown		

					Two R	iver (0701020101)					
			Water q	uality			Strategies to achie	ve final wat	er quality	/ goal	
	Location						EXAMP	LE BMP Sce	enario		
Waterbody (ID)	and upstream influence counties	Pollutant/ stressor	Current WQ conditions	Milestone (optional)	Final WQ goal	Strategy type	ВМР	Amount	Unit	Estimated reduction (Ib/yr) as applicable	Notes
						Septic system	Ordinance development and improved regulation of SSTS sludge land application	Low	-	unknown	
Hereit			Maximum			improvements (continued)	Conduct risk assessment of septic systems	Low	-	unknown	
Unnamed creek (-			monthly geomean:				Improve septic systems	Low	-	unknown	
580) (continued) and			318 org/100 mL		126 org/100 mL; 60% reduction		Conversion of conventional pasture to prescribed rotational grazing	High	-	unknown	
and Unnamed creek (- 612)			Maximum monthly geomean:		126 org/100		Support pasture improvement and silvopasture	High	-	unknown	
(continued) and Krain Creek (- 613)	Stearns	E. coli	2,033 org/100 mL Maximum monthly geomean:	TBD during 1W1P	mL 94% reduction 126 org/100 mL 69%	Pasture	Exclusion fencing and livestock access control in and near streams, lakes, and wetlands and support alternate water supply, especially on small operations	High	-	unknown	
(continued)			406 org/100 mL		reduction	management	Promote practices that reduce stocking density	High	-	unknown	
and Unnamed creek (-628)			Maximum monthly geomean:		126 org/100 mL 66% reduction		Improve coordination of smaller facilities with local ordinances related to hose pumps, dugouts, and wells	High	-	unknown	
(continued)			372 org/100 mL				Promote practices that reduce stocking density	High	-	unknown	
							Improve coordination of smaller facilities with local ordinances related to hose pumps, dugouts, and wells	High	-	unknown	

					Two R	iver (0701020101)					
			Water q	uality			Strategies to achie	eve final wat	ter quality	/ goal	
	Location and		Current WQ	Milestone	Final WQ		EXAMP	LE BMP Sco	enario	Estimated	
Waterbody (ID)	upstream influence counties	Pollutant/ stressor	conditions	(optional)	goal	Strategy type	ВМР	Amount	Unit	reduction (lb/yr) as applicable	Notes
						Conduct water storage opportunity study to reduce flooding and water quantity issues				See Figure 39 for area	
				TBD during 1W1P		Implement recommendations in the Two Rivers Lake Targeted Conservation Practice Plan (RESPEC 2015)					
						Drainage ditch		county ditche	s		
		All	See Table 3			modifications	Inventory ditches to identify areas of high density, consider a ditch density study				Area has
							Re-meander channelize	ed stream re	aches in s	elect areas	severely
						Stream restoration and stabilization	Promote natural channel design principles for stream restorations				altered hydrology
							Promote of	critical area p	lantings		
							Restore floodplain	s and reconr	nect with c	hannel	
Two Rivers		Stearns				Point source control	Meet/maintain NPDES permit limit per MRSW TMDL 0			0	No reductions required in the MRS TMDL
(73-0138- 00)	Stearns					Add cover crops for living cover in fall/spring	Increase late-season cover plantings with corn and soybeans to reduce sediment loss, improve nutrient uptake	7,250	acres treate d	2,100 lb/yr	
				TBD	67%;	Tillage/ residue management	Conservation tillage	12,700	acres treate d	4,200 lb/yr	Reductions calculated using loading
		Phosphoru S	64 μg/L	during 1W1P	15,851 lb/yr reduction		Develop an ordinance to increase buffers	-	-	na	rates from BATHTUB modeling
						Buffers - field edge	Increase acreage of field borders to complement existing conservation management systems.	11,800	acres treate	7,900 lb/yr	outputs and suggested reductions for HSPF-SAM
							Promote upland buffer restoration	uffer d	d		
							Encourage vegetated buffers	ed			

					Two R	iver (0701020101)					
			Water q	uality			Strategies to achie	eve final wat	er quality	' goal	
	Location						EXAMP	LE BMP Sce	enario		
Waterbody (ID)	and upstream influence counties	Pollutant/ stressor	Current WQ conditions	Milestone (optional)	Final WQ goal	Strategy type	ВМР	Amount	Unit	Estimated reduction (Ib/yr) as applicable	Notes
						Nutrient Management	Reduced application and incorporation	7,300	acres treate d	940 lb/yr	
				TBD during 1W1P			Create MIDS for future development along lakeshores	High	-	na	
			onoru 64 µg/L during		67%; 15,851 lb/yr reduction	Lake	Native shoreline restoration	High	-	na	
						Pasture management	Develop and implement shoreline ordinance updates	High	-	na	
		Phosphoru					Educate residents to increase awareness of BMPs and LID for future developments	High	-	na	
Two Rivers (73-0138-	Stearns						Conversion of conventional pasture to prescribed rotational grazing	High	-	unknown	Pasture contributes
00) (continued)	Cloams	S					Support pasture improvement and silvopasture	High	-	unknown	1,546 lb/yr to Two Rivers Lake.
							Exclusion fencing and livestock access control in and near streams, lakes, and wetlands and support alternate water supply, especially on small operations	High	-	unknown	Expected reductions from pasture management are not quantified in the HSPF-
							Promote practices that reduce stocking density	High	-	unknown	SAM tool but are expected to reduce phosphorus
							Improve coordination of smaller facilities with local ordinances related to hose pumps, dugouts, and wells	High	-	unknown	loading to Two Rivers Lake.

					Two R	iver (0701020101)							
			Water q	uality			Strategies to achie	eve final wa	ter quality	/ goal	-		
Waterbody (ID)	Location and upstream influence counties	Pollutant/ stressor	Current WQ conditions	Milestone (optional)	Final WQ goal	Strategy type	ЕХАМР	LE BMP Sco	enario Unit	Estimated reduction (Ib/yr) as	Notes		
							Improve subsurface sewer treatment systems (SSTS) compliance inspections	High	-	applicable			
Two Divort						Septic system	SSTS ordinance development and updates	High	-		Fotimated		
Two Rivers (73-0138-				TDD	67%;	67%	67%	improvements	Improve failing SSTSs	Low	-		Estimated reduction from
(continued)	Stearns	Phosphoru S	64 μg/L	TBD during 1W1P	15,851 lb/yr reduction		Ordinance development and improved regulation of SSTS sludge land application	Low	-	112 lb/yr	Table 70 in MRS TMDL		
							Conduct risk assessment of septic systems	Low	-	_			
						TOTAL Ph	Improve septic systems osphorus load reduction	Low	- Approx	. 15,250 lb/yr			
							Create MIDS for future development along lakeshores						
								· · ·	~				
						Lake management	Native shoreline restoration Develop and implement shoreline ordinance updates						
									Educate residents to inc for fut	rease aware ure developr		MPs and LID	
Pelican Lake (73- 0118-00	Stearns	All	See Table 3	TBD during	-	Add cover crops for living cover in fall/spring	Increase late-season cov to reduce sediment						
0118-00				1W1P		Tillage/ residue management	Cons	servation tilla	ige				
							Develop an ord	inance to inc	rease buf	fers			
						Buffers - field edge	Increase acreage of fie conservation						
							Promote up	land buffer r	estoration				

					Two R	iver (0701020101)					
	an Upstream stressor Conditions (optional)						Strategies to achieve	eve final wa	ter quality	/ goal	
	Location						EXAMF	PLE BMP Sc	enario		
Waterbody (ID)	and upstream influence				Final WQ goal	Strategy type	ВМР	Amount	Unit	Estimated reduction (lb/yr) as applicable	Notes
			Buffers - field edge (continued)	Encoura	ge vegetated	buffers					
						Nutrient Management	Reduced app	lication and i	ncorporati	on	
							Conversion of convention	onal pasture f grazing	o prescrib	ed rotational	
						Destaur	Conversion of conventional pasture to prescribed rotational grazing Support pasture improvement and silvopasture Exclusion fencing and livestock access control in and pear				
Pelican Lake (73- 0118-00	Stearns	All	See Table 3	TBD during 1W1P	-	Pasture management	0	etlands and s	upport alte	Estimated reduction (Ib/yr) as applicable ion oed rotational oasture ol in and near ernate water ins density with local , and wells ms (SSTS)	
0110.00				IVVIP			Promote practices	s that reduce	stocking o	lensity	
							Improve coordination ordinances related to				
							Improve subsurface s compl	sewer treatm liance inspec		alternate water ations ing density es with local puts, and wells	
						Septic system improvements	SSTS ordinance	e developme	nt and upc	lates	
							Impro	ove failing SS	TSs		

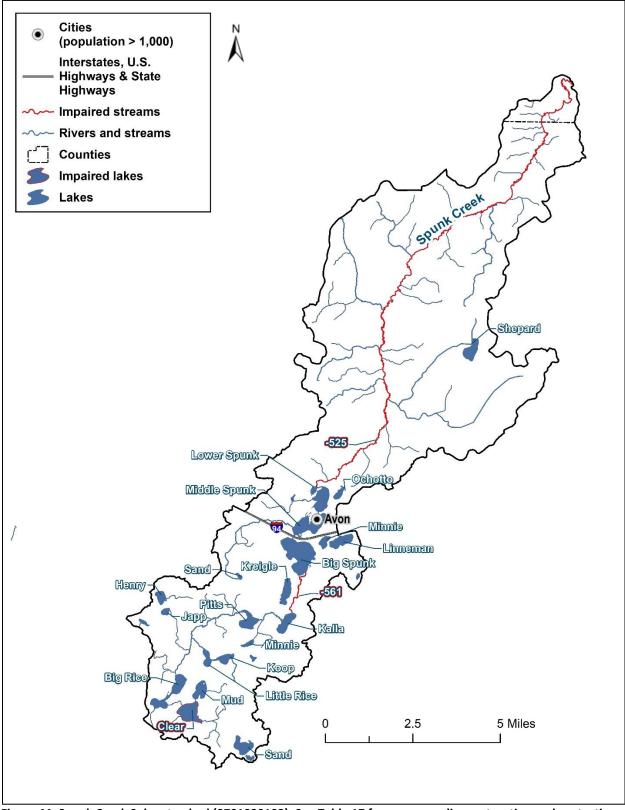


Figure 44. Spunk Creek Subwatershed (0701020102). See Table 17 for corresponding restoration and protection strategies.

				-	Spunk C	reek (0701020102)					
			Water qu	ality			Strategies to achieve	e final water	quality g	oal	
Waterbody (ID)	Location and upstream influence counties	Pollutant/ Stressor	Current WQ conditions	Milestone (optional)	Final WQ goal	Strategy type	EXAMPL	E BMP scer	unit	Estimated reduction (Ib/yr) as applicable	Notes
					Implement s	trategies and BMPs	listed in the watershed wide	table, as app	olicable.		
A.II.	Morrison,	A II	See Table				Create minimum impa developme	act design sta nt along lake		r future	
All	Stearns, Todd	All	2 and Table 3		Lake Manage	ement	Develop and impleme	nt shoreline o	ordinance	updates	
					Lano manage		Native sh	oreline restor	ration		
							Educate residents to incr impact development				
Spunk Creek (-525)	Morrison, Stearns	Fecal Coliform	Maximum monthly geomean: 1,250 org/100mL	TBD during 1W1P	Maximum monthly geomean 126 org/100mL; flow regime reductions: high-0%, moist-84%, mid-range- 58%, dry- 75%, low- insufficient data	Implement prior Upper Mississi	ity actions for the Spunk Cre ppi River Bacteria TMDL Imp	ek subwaters blementation	shed provi Plan (MPC	ded in the CA 2016)	
					Maximum		Feedlot runoff reduction/treatment	High	-	unknown	
Spunk Branch (-561)	Stearns	E. coli	Maximum monthly geomean: 257 org/100mL	TBD during 1W1P	monthly geomean: 126 org/100 mL; 51%	Feedlot runoff controls	Provide funding for small operations to reduce runoff and improve treatment, especially near waters of the state	High	-	unknown	
					reduction		Feedlot manure/ runoff storage addition	High	-	unknown	

Table 17. Restoration and protection strategies for the Spunk Creek Subwatershed (0701020102)

					Spunk C	reek (0701020102)					
			Water qu	ality			Strategies to achiev	e final water	quality g	oal	
	Location						EXAMP	LE BMP scer	nario		
Waterbody (ID)	and upstream influence counties	Pollutant/ Stressor	Current WQ conditions	Milestone (optional)	Final WQ goal	Strategy type	ВМР	Amount	Unit	Estimated reduction (lb/yr) as applicable	Notes
							Increase rainwater diversion practices	High	-	unknown	
							Improve inter-agency coordination of feedlot inspections and record keeping requirements	High	-	unknown	
							Feedlot relocation/ retirement	High	-	unknown	
							Promote practices that reduce stocking density	High	-	unknown	
						Feedlot runoff	Total confinement facilities	High	-	unknown	
			Maximum		Maximum monthly	controls (continued)	Feed storage in silos/grain bins or on impervious surfaces	High	-	unknown	
Spunk Branch (-561)	Stearns	E. coli	monthly geomean: 257	TBD during 1W1P	geomean: 126 org/100		Storage of process wastewater in tank/manure pits	High	-	unknown	
(continued)			org/100mL		mL; 51% reduction		Improved record keeping and mapping of existing risks	High	-	unknown	
							Improve process/regulations for siting of stockpiles. Ensure that soil type and quality are considered	High	-	unknown	
						Septic system improvements	Improve subsurface sewer treatment systems (SSTS) compliance inspections	High	-	unknown	
							SSTS ordinance development and updates	High	-	unknown	

					Spunk C	reek (0701020102)					
			Water qu	ality			Strategies to achieve	e final water	quality g	oal	
	Location						EXAMPI	E BMP scen	ario		
Waterbody (ID)	and upstream influence counties	Pollutant/ Stressor	Current WQ conditions	Milestone (optional)	Final WQ goal	Strategy type	ВМР	Amount	Unit	Estimated reduction (lb/yr) as applicable	Notes
							Improve failing SSTSs	Low	-	unknown	
						Septic system	Ordinance development and improved regulation of SSTS sludge land application	Low	-	unknown	
						management (continued)	Conduct risk assessment of septic systems	Low	-	unknown	
							Improve septic systems	Low	-	unknown	
Spunk			Maximum monthly	TBD	Maximum monthly geomean:		Conversion of conventional pasture to prescribed rotational grazing	High	-	unknown	
Branch (-561) (continued)	Stearns	E. coli	geomean: 257 org/100mL	during 1W1P	126 org/100 mL; 51%		Support pasture improvement and silvopasture	High	-	unknown	
					reduction	Pasture management	Exclusion fencing and livestock access control in and near streams, lakes, and wetlands and support alternate water supply, especially on small operations	High	-	unknown	
							Promote practices that reduce stocking density	High	-	unknown	
							Improve coordination of smaller facilities with local ordinances related to hose pumps, dugouts, and wells	High	-	unknown	

					Spunk C	reek (0701020102)					
			Water qu	ality			Strategies to achieve	e final water	quality g	oal	
	Location						EXAMPI	E BMP scen	nario		
Waterbody (ID)	and upstream influence counties	Pollutant/ Stressor	Current WQ conditions	Milestone (optional)	Final WQ goal	Strategy type	ВМР	Amount	Unit	Estimated reduction (lb/yr) as applicable	Notes
							Create MIDS for future development along lakeshores	Not applicable	-	unknown	
							Develop and implement shoreline ordinance updates	High	-	unknown	
Clear Lake (73-0172-	Stearns	Fish Bioassessment		TBD during		Lake management	Native shoreline restoration	High	-	unknown	
00)	Steams	stressor: unknown	-	1W1P			Educate residents to increase awareness of BMPs and LID for future developments	High	-	unknown	
							Encourage formation of lake association or similar homeowner and lake user organization	Not applicable	-	unknown	
						Develop a lake s	tressor identification report	to determine of	cause of i	mpairment	
Big, Middle,							Create minimum imp developme	act design sta ent along lake		or future	
and Lower Spunk (73-			Cas Table	TBD		Laba		oreline restor			See Figure 39 for area
0117-00, 73-0128-	Stearns	All	See Table 3	during 1W1P	-	Lake Management	Develop and impleme	nt shoreline c	ordinance	updates	of cabins converting
00, 73- 0123-00)				10011			Educate residents to incr impact development				to homes

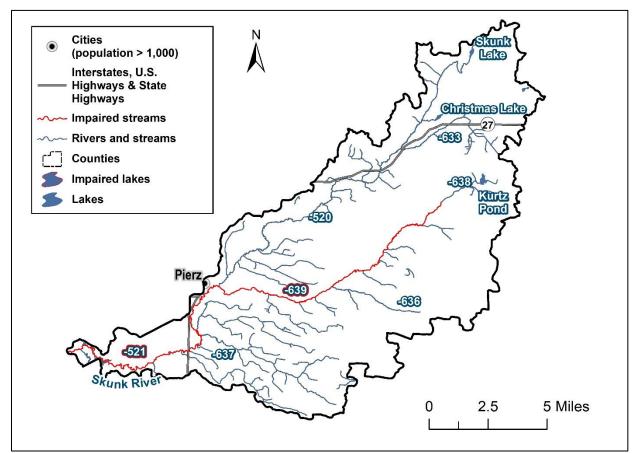


Figure 45. Skunk River Subwatershed (0701020103). See Table 18 for corresponding restoration and protection strategies.

					Skunk R	liver (0701020103)					
			Water qu	ality			Strategies to achieve	e final water o	quality g	oal	
Waterbody (ID)	Location and upstream influence counties	Pollutant/ Stressor	Current WQ conditions	Milestone (optional)	Final WQ goal	Strategy type	EXAMPI	LE BMP scen	ario Unit	Estimated reduction (Ib/yr) as applicable	Notes
All	Morrison, Stearns, Todd	All	See Table 2 and Table 3		Implement s	strategies and BMPs	listed in the watershed wide	e table, as app	licable.		
						Point source control	Meet/maintain NPDES	S permit limit p	oer MRSV	W TMDL	No reductions required in the MRS TMDL
							Feedlot runoff reduction/treatment	High	-	unknown	
							Provide funding for small operations to reduce runoff and improve treatment, especially near waters of the state	High	-	unknown	
					Maximum		Feedlot manure/ runoff storage addition	High	-	unknown	
Skunk River	Morrison	Fecal Coliform	Maximum monthly geomean:	TBD during	monthly geomean: 126		Increase rainwater diversion practices	High	-	unknown	
(-521)			4,925 org/100mL	1W1P	org/100 mL; 97% reduction	Feedlot runoff controls	Improve inter-agency coordination of feedlot inspections and record keeping requirements	High	-	unknown	
							Feedlot relocation/ retirement	High	-	unknown	
							Promote practices that reduce stocking density	High	-	unknown	
							Total confinement facilities	High	-	unknown	
							Feed storage in silos/grain bins or on impervious surfaces	High	-	unknown	
							Storage of process wastewater in tank/manure pits	High	-	unknown	

Table 18. Restoration and protection strategies for the Skunk River Subwatershed (0701020103)

					Skunk R	liver (0701020103)					
			Water qu	ality			Strategies to achieve	e final water	quality g	oal	
Waterbody (ID)	Location and upstream influence counties	Pollutant/ Stressor	Current WQ conditions	Milestone (optional)	Final WQ goal	Strategy type	EXAMPI	E BMP scen	ario Unit	Estimated reduction (lb/yr) as applicable	Notes
						Feedlot runoff	Improved record keeping and mapping of existing risks	High	-	unknown	
						controls (continued)	Improve process/regulations for siting of stockpiles. Ensure that soil type and quality are considered	High	-	unknown	
							Improve subsurface sewer treatment systems (SSTS) compliance inspections	High	-	unknown	
Skunk			Maximum		Maximum monthly		SSTS ordinance development and updates	ordinance pment and High - unknown			
River (-521)	Morrison	Fecal Coliform	monthly geomean:	TBD during	geomean: 126	Septic system	Improve failing SSTSs	Low	-	unknown	
(continued)			4,925 org/100mL	1W1P	org/100 mL; 97% reduction	improvements	Ordinance development and improved regulation of SSTS sludge land application	Low	-	unknown	
							Conduct risk assessment of septic systems	Low	-	unknown	
							Improve septic systems	Low	ow - unknown		
						Pasture management	Conversion of conventional pasture to prescribed rotational grazing	High	-	- unknown - unknown	
							Support pasture improvement and silvopasture	High	-		

					Skunk R	iver (0701020103)					
			Water qu	ality			Strategies to achieve	e final water	quality g	oal	
Waterbody (ID)	Location and upstream influence counties	Pollutant/ Stressor	Current WQ conditions	Milestone (optional)	Final WQ goal	Strategy type	EXAMPI	E BMP scen	ario Unit	Estimated reduction (lb/yr) as applicable	Notes
Claugh			Maulanua		Maximum	Pasture	Exclusion fencing and livestock access control in and near streams, lakes, and wetlands and support alternate water supply, especially on small operations	High	-	unknown	
Skunk River (-521)	Morrison	Fecal Coliform	Maximum monthly geomean:	TBD during	monthly geomean: 126	management (continued)	Promote practices that reduce stocking density	High	-	unknown	
(continued)			4,925 org/100mL	1W1P	org/100 mL; 97% reduction		Improve coordination of smaller facilities with local ordinances related to hose pumps, dugouts, and wells	High	-	unknown	
						Wildlife management	Wildlife management to discourage the congregation of wildlife in lakes and wetland	Low	- unknown	unknown	
							Feedlot runoff reduction/treatment	High	-	unknown	
							Provide funding for small operations to reduce runoff and improve treatment, especially near waters of the state	High	-	unknown	
			Maximum		Maximum monthly		Feedlot manure/ runoff storage addition	High	-	unknown	
Hillman Creek	Morrison	E. coli	monthly geomean:	TBD during	geomean: 126	Feedlot runoff controls	Increase rainwater diversion practices	High	-	unknown	
(-639)			1,520 org/100mL	1W1P	org/100 mL; 92% reduction		Improve inter-agency coordination of feedlot inspections and record keeping requirements	High	-	unknown	
							Feedlot relocation/ retirement	High	High - unknown	unknown	
							Promote practices that reduce stocking density	High	-		
							Total confinement facilities	High	-	unknown	

					Skunk R	liver (0701020103)						
			Water qu	ality			Strategies to achieve	e final water o	quality g	oal		
	Location and		Current	Milestone	Final WQ		EXAMPL	E BMP scen	ario	Estimated		
Waterbody (ID)	upstream influence counties	Pollutant/ Stressor	WQ conditions	(optional)	goal	Strategy type	ВМР	Amount	Unit	reduction (lb/yr) as applicable	Notes	
							Feed storage in silos/grain bins or on impervious surfaces	High	-	unknown		
						Feedlot runoff	Storage of process wastewater in tank/manure pits	High	-	unknown		
						controls (continued)	Improved record keeping and mapping of existing risks	High	-	unknown		
			Maximum		Maximum		Improve process/regulations for siting of stockpiles. Ensure that soil type and quality are considered	High	-	unknown		
Hillman Creek (-639) (continued)	Morrison	E. coli	monthly geomean: 1,520 org/100mL	TBD during 1W1P	monthly geomean: 126 org/100 mL; 92%		Improve subsurface sewer treatment systems (SSTS) compliance inspections	High	-	unknown		
					reduction		SSTS ordinance development and updates	High	-	unknown		
						Septic system	Improve failing SSTSs	Low	-	unknown		
					improveme			Ordinance development and improved regulation of SSTS sludge land application	Low	-	unknown	
							Conduct risk assessment of septic systems	Low	-	unknown		
							Improve septic systems	Low	-	unknown		

					Skunk R	iver (0701020103)					
			Water qu	ality			Strategies to achieve	e final water o	quality g	oal	
	Location		Commonst				EXAMPI	E BMP scen	ario		
Waterbody (ID)	and upstream influence counties	Pollutant/ Stressor	Current WQ conditions	Milestone (optional)	Final WQ goal	Strategy type	ВМР	Amount	Unit	Estimated reduction (lb/yr) as applicable	Notes
							Conversion of conventional pasture to prescribed rotational grazing	High	-	unknown	
							Support pasture improvement and silvopasture	High	-	unknown	
Hillman Creek (-639) (continued)	Morrison	E. coli	Maximum monthly geomean: 1,520 org/100mL	TBD during 1W1P	Maximum monthly geomean: 126 org/100 mL; 92% reduction	Pasture management	Exclusion fencing and livestock access control in and near streams, lakes, and wetlands and support alternate water supply, especially on small operations	High	-	unknown	
							Promote practices that reduce stocking density	High	-	unknown	
							Improve coordination of smaller facilities with local ordinances related to hose pumps, dugouts, and wells	High	-	unknown	

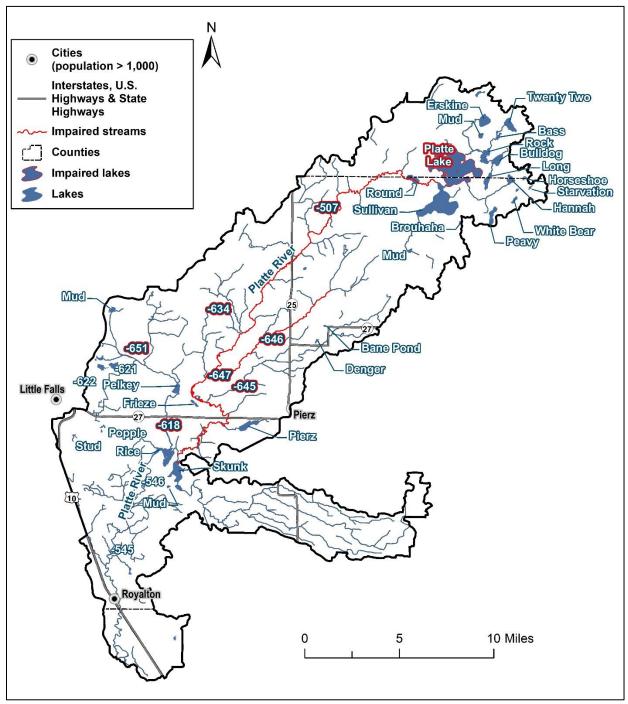


Figure 46. Platte River Subwatershed (0701020104). See Table 19 for corresponding restoration and protection strategies.

					Platt	e River (0701020104)					
			Water q	uality			Strategies to ach	nieve final wa	ter quality g	oal	
Waterbody (ID)	Location and upstream influence counties	Pollutant/ Stressor	Current WQ conditions	Milestone (optional)	Final WQ Goal	Strategy type	EXAMPLE Best Ma BMP	nagement Pr Amount	actice (BMP Unit) Scenario Estimated reduction (Ib/yr) as applicable	Notes
	Benton,			Preserve	and protect w	rild rice areas in upper River–Sartell S	portion of the watershed Stressor Identification Re	l as recomme eport.	nded in the M	lississippi	
All	Crow Wing, Morrison, Todd	All	See Table 2 and Table 3	Continu	ue treatment of	f oak wilt and prevent s	spread of disease to add	itional foreste	d areas in wa	atershed	See Figure 39 for area of oak wilt prevention and control area
					Implement	strategies and BMPs I	isted in the watershed w	vide table, as a	applicable.		
							Modify or replace Platte River dam for fish passage	1	dam	unknown	BMPs selected based on
		Longitudinal connectivity, habitat	fIBI 31-79		fIBI 47	Habitat and stream connectivity management	Riparian tree plantings for shade on wide and shallow sections of stream	-	-	unknown	analyses provided in the MRS stressor identification report
Diatta Diver	Crow						Feedlot runoff reduction/treatment	High	-	unknown	
Platte River (-507)	Wing, Morrison	E. coli	Maximum monthly geomean: 1,143	TBD during 1W1P	Maximum monthly geomean: 126 org/100	Feedlot runoff controls	Provide funding for small operations to reduce runoff and improve treatment, especially near waters of the state	High	-	unknown	
			org/100mL		mL; 89% reduction		Feedlot manure/ runoff storage addition	High	-	unknown	
							Increase rainwater diversion practices	High	-	unknown	

Table 19. Restoration and protection strategies for the Platte River Subwatershed (0701020104)

					Platt	e River (0701020104)	l				
			Water q	uality			Strategies to ach	nieve final wa	ter quality g	joal	
Waterbody	Location and	Pollutant/	Current	Milestone	Final WQ	_	EXAMPLE Best Ma	nagement Pra	actice (BMF	Estimated	
(ID)	upstream influence counties	Stressor	WQ conditions	(optional)	Goal	Strategy type	ВМР	Amount	Unit	reduction (lb/yr) as applicable	Notes
							Improve inter- agency coordination of feedlot inspections and record keeping requirements	High	-	unknown	
							Feedlot relocation/ retirement	High	-	unknown	
							Promote practices that reduce stocking density	High	-	unknown	
							Total confinement facilities	High	-	unknown	
					Maximum	Feedlot runoff controls (continued)	Feed storage in silos/grain bins or on impervious surfaces	High	-	unknown	
Platte River (-507)	Crow Wing,	E. coli	Maximum monthly geomean:	TBD during	monthly geomean: 126		Storage of process wastewater in tank/manure pits	High	-	unknown	
(continued)	Morrison		1,143 org/100mL	1W1P	org/100 mL; 89% reduction		Improved record keeping and mapping of existing risks	High	-	unknown	
							Improve process/regulations for siting of stockpiles. Ensure that soil type and quality are considered	High	-	unknown	
						Septic system improvements	Improve subsurface sewer treatment systems (SSTS) compliance inspections	High	-	unknown	
							SSTS ordinance development and updates	High	-	unknown	

		_			Platt	e River (0701020104)					
			Water q	uality			Strategies to ach	nieve final wa	ter quality g	oal	
Waterbody (ID)	Location and upstream influence counties	Pollutant/ Stressor	Current WQ conditions	Milestone (optional)	Final WQ Goal	Strategy type	EXAMPLE Best Ma	nagement Pra	actice (BMP Unit) Scenario Estimated reduction (Ib/yr) as applicable	Notes
							Ordinance development and improved regulation of SSTS sludge land application	Low	-	unknown	
						Septic system improvements	Improve failing SSTSs	Low	-	unknown	
						(continued)	Conduct risk assessment of septic systems	Low	-	unknown	
		Wing, <i>E. coll</i> geomean.					Improve septic systems	Low	-	unknown	
					Maximum monthly		Conversion of conventional pasture to prescribed rotational grazing	High	-	unknown	
Platte River (-507) (continued)	Crow Wing, E. co Morrison		TBD during 1W1P	geomean: 126 org/100		Support pasture improvement and silvopasture	High	-	unknown		
(507)					mL; 89% reduction	Pasture management	Exclusion fencing and livestock access control in and near streams, lakes, and wetlands and support alternate water supply, especially on small operations	High	-	unknown	
							Promote practices that reduce stocking density	High	-	unknown	
							Improve coordination of smaller facilities with local ordinances related to hose pumps, dugouts, and wells	High	-	unknown	

					Platt	<mark>e River (0701020104)</mark>					
			Water q	uality			Strategies to ach	nieve final wa	ter quality g	oal	
Waterbody (ID)	Location and upstream influence counties	Pollutant/ Stressor	Current WQ conditions	Milestone (optional)	Final WQ Goal	Strategy type	EXAMPLE Best Ma BMP	nagement Pr	actice (BMP) Unit) Scenario Estimated reduction (Ib/yr) as applicable	Notes
Rice Creek (-618)	Morrison	DO	mlBl 21	TBD during 1W1P	mIBI 43	Further investigate		BMPs selected based on analyses provided in the MRS stressor identification report			
	Longitudinal connectivity,			TBD		Habitat and stream connectivity management	Modify series of culverts at the 193rd St. crossing to increase available substrate and velocity breaks within the culvert to allow for smaller fish species passage per the Stressor Identification Report (MPCA 2019b)	-	-	unknown	BMPs selected based on analyses provided in the MRS stressor identification
Unnamed creek (-634)	Morrison	Connectivity, fIBI	connectivity, DO fIBI 25; (naturally mIBI 48	during 1W1P	fIBI 42; mIBI 53		Investigate impacts of historical beaver dams on connectivity and DO levels	-	-	unknown	report
						Pasture management	Conversion of conventional pasture to prescribed rotational grazing	High	-	unknown	
						management	Support pasture improvement and silvopasture	High	-	unknown	

					Platt	<mark>e River (0701020104</mark>)					
			Water q	uality			Strategies to ach	nieve final wa	ter quality g	oal	
	Location						EXAMPLE Best Ma	nagement Pr	actice (BMP) Scenario	
Waterbody (ID)	and upstream influence counties	Pollutant/ Stressor	Current WQ conditions	Milestone (optional)	Final WQ Goal	Strategy type	BMP	Amount	Unit	Estimated reduction (lb/yr) as applicable	Notes
Unnamed				TBD		Pasture	Exclusion fencing and livestock access control in and near streams, lakes, and wetlands and support alternate water supply, especially on small operations	High	-	unknown	
creek (-634) (continued)	Morrison	connectivity, on DO (naturally occurring)	lly mIBI 48	during 1W1P	fIBI 42; mIBI 53	management (continued)	Promote practices that reduce stocking density	High	-	unknown	
							Improve coordination of smaller facilities with local ordinances related to hose pumps, dugouts, and wells	High	-	unknown	
Little Mink				TBD		Stream restoration and stabilization	Remeander channelized section upstream of biological station 16UM105 using natural design	-	-	unknown	BMPs selected based on analyses provided in the MRS stressor
Creek (-645)	Morrison	Habitat, DO mIBI 22-42	during 1W1P	mlBl 43	Habitat and stream connectivity management	Address excessive fine bedded sediment along reach	-	-	unknown	stressor identification report. See Figure 22 in the stressor identification report	

					Platt	<mark>e River (0701020104</mark>)					
			Water q	uality			Strategies to ach	nieve final wa	ter quality g	oal	
	Location						EXAMPLE Best Ma	nagement Pr	actice (BMP		
Waterbody (ID)	and upstream influence counties	Pollutant/ Stressor	Current WQ conditions	Milestone (optional)	Final WQ Goal	Strategy type	ВМР	Amount	Unit	Estimated reduction (lb/yr) as applicable	Notes
							Feedlot runoff reduction/treatment	High	-	unknown	
							Provide funding for small operations to reduce runoff and improve treatment, especially near waters of the state	High	-	unknown	
		n <i>E. coli</i>	li geomean: 300 org/100mL				Feedlot manure/ runoff storage addition	High	-	unknown	
					Maximum monthly		Increase rainwater diversion practices	High	-	unknown	
Big Mink Creek (-646)	Morrison			TBD during 1W1P	geomean 126 org/100mL; 58% reduction	Feedlot runoff controls	Improve inter- agency coordination of feedlot inspections and record keeping requirements	High	-	unknown	
							Feedlot relocation/ retirement	High	-	unknown	
							Promote practices that reduce stocking density	High	-	unknown	
							Total confinement facilities	High	-	unknown	
							Feed storage in silos/grain bins or on impervious surfaces	High	-	unknown	

		-			Platt	e River (0701020104)					
	influence Stressor WQ (optional)						Strategies to ach	nieve final wa	ter quality g	joal	
	Location						EXAMPLE Best Ma	nagement Pra	actice (BMP) Scenario	
Waterbody (ID)	and upstream		WQ		Final WQ Goal	Strategy type	ВМР	Amount	Unit	Estimated reduction (Ib/yr) as applicable	Notes
							Storage of process wastewater in tank/manure pits	High	-	unknown	
						Feedlot runoff controls	Improved record keeping and mapping of existing risks	High	-	unknown	
		Morrison <i>E. coli</i>				(continued)	Improve process/regulations for siting of stockpiles. Ensure that soil type and quality are considered	High	-	unknown	
Big Mink Creek (-646) continued)	Morrison		Maximum monthly geomean: 300	TBD during 1W1P	Maximum monthly geomean 126 org/100mL;		Improve subsurface sewer treatment systems (SSTS) compliance inspections	High	-	unknown	
(continued)			org/100mL		58% reduction		SSTS ordinance development and updates	High	-	unknown	
						Septic system	Improve failing SSTSs	Low	-	unknown	
						improvements	Ordinance development and improved regulation of SSTS sludge land application	Low	-	unknown	
							Conduct risk assessment of septic systems	Low	-	unknown	
							Improve septic systems	Low	-	unknown	

					Platt	<mark>e River (0701020104)</mark>					
			Water q	uality			Strategies to ach	nieve final wa	ter quality g	oal	
Waterbody	Location and upstream	Pollutant/	Current WQ	Milestone	Final WQ	Strategy type	EXAMPLE Best Ma	_		Estimated reduction	Notes
(ID)	influence counties	Stressor	conditions	(optional)	Goal		ВМР	Amount	Unit	(lb/yr) as applicable	
							Conversion of conventional pasture to prescribed rotational grazing	High	-	unknown	
							Support pasture improvement and silvopasture	High	-	unknown	
Big Mink Creek (-646) (continued)	Morrison	E. coli	Maximum monthly geomean: 300 org/100mL	TBD during 1W1P	Maximum monthly geomean 126 org/100mL; 58% reduction	Pasture management	Exclusion fencing and livestock access control in and near streams, lakes, and wetlands and support alternate water supply, especially on small operations	High	-	unknown	
		Morrison Habitat, DO mIBI 33-36					Promote practices that reduce stocking density	High	-	unknown	
							Improve coordination of smaller facilities with local ordinances related to hose pumps, dugouts, and wells	High	-	unknown	
						Stream restoration and stabilization	Remeander upstream channelization using natural design	-	-	unknown	BMPs selected
Big Mink Creek (-647)	Morrison			TBD during 1W1P	mIBI 37	Habitat and stream connectivity management	Restore productive riffle substrate habitat after areas of low flow (i.e., wetland areas)	-	-	unknown	based on analyses provided in the MRS stressor
				1W1P		Pasture management	Exclusion fencing and livestock access control along entire reach	-	-	unknown	identification report

					Platt	e River (0701020104)					
			Water q	uality			Strategies to ach	ieve final wa	ter quality g	oal	
	Location						EXAMPLE Best Ma	nagement Pra	actice (BMP) Scenario	
Waterbody (ID)	and upstream influence counties	Pollutant/ Stressor	Current WQ conditions	Milestone (optional)	Final WQ Goal	Strategy type	BMP	Amount	Unit	Estimated reduction (lb/yr) as applicable	Notes
Unnamed		Streamflow	fIBI 17 -	TBD	fIBI 42; m	Stream restoration and stabilization	Remeander channelized section of reach using natural design	-	-	unknown	BMPs selected based on analyses
creek (-651)	Morrison	alteration	29; mIBI 31 - 41	during 1W1P	IBI 37	Habitat and stream connectivity management	Modify or replace culverts on 173rd street	-	-	unknown	provided in the MRS stressor identification report
							Improve subsurface sewer treatment systems (SSTS) compliance inspections	High	-		
							SSTS ordinance development and High - updates				
						Septic system	Improve failing SSTSs	Low	-	98 lb/yr	
Platte (18-0088- 00)	Crow Wing, Morrison	Wing, Phosphorus 48	48 ug/L	TBD during 1W1P	45%; 1,902 lb/year reduction	improvements	Ordinance development and improved regulation of SSTS sludge land application	Low	-	98 lb/yr	
							Conduct risk assessment of septic systems	Low	-		
							Improve septic systems	Low	-		
						Pasture management	Conversion of conventional pasture to prescribed rotational grazing	High	-	unknown	Pasture contributes approximately 329 lb/yr to Platte Lake.
							Support pasture improvement and silvopasture	High	-	unknown	Expected reductions from pasture

					Platt	e River (0701020104)	1				
			Water q	uality			Strategies to ach	ieve final wa	ter quality g	oal	
Waterbody (ID)	Location and upstream influence counties	Pollutant/ Stressor	Current WQ conditions	Milestone (optional)	Final WQ Goal	Strategy type	EXAMPLE Best Ma	nagement Pr Amount	actice (BMP)	Estimated reduction (Ib/yr) as	Notes
						Pasture	Exclusion fencing and livestock access control in and near streams, lakes, and wetlands and support alternate water supply, especially on small operations	High	-	<i>applicable</i> unknown	management are not quantified at this time in
						management (continued)	Promote practices that reduce stocking density	High	-	unknown	the HSPF- SAM tool but are expected
Platte	Crow		48 ug/L from 2008		45%; 1,902		Improve coordination of smaller facilities with local ordinances related to hose pumps, dugouts, and wells	High	-	unknown	to reduce phosphorus loading to Platte Lake
(18-0088- 00) (continued)	Wing, Morrison	Phosphorus	to 2017 monitoring data	TBD during 1W1P	lb/year reduction		Create MIDS for future development along lakeshores	High	-	-	
							Develop and implement shoreline ordinance updates	High	-	-	
						Lake management	Native shoreline restoration	High	-	na	
							Educate residents to increase awareness of BMPs and LID for future developments	High	-	-	
						Alum treatment to address internal loading of phosphorus	1	annual treatment	135 lb/yr		
						Add cover crops for living cover in fall/spring	Increase late- season cover plantings with corn and soybeans	670	acres treated	310 lb/yr	

					Platt	e River (0701020104)					
			Water q	uality			Strategies to ach	ieve final wa	ter quality g	oal	
	Location						EXAMPLE Best Ma	nagement Pra	actice (BMP) Scenario	
Waterbody (ID)	and upstream influence counties	Pollutant/ Stressor	Current WQ conditions	Milestone (optional)	Final WQ Goal	Strategy type	BMP	Amount	Unit	Estimated reduction (lb/yr) as applicable	Notes
						Tillage/ residue management	Conservation tillage	1,110	acres treated	590 lb/yr	
						Nutrient Management	Reduce application and manure incorporation	670	acres treated	140 lb/yr	
Platte (18-0088- 00)	Crow Wing,	Phosphorus	48 ug/L from 2008 to 2017		45%; 1,902		Update buffer law ordinances to increase compliance	high	-	na	
(continued)	Morrison		monitoring data	TBD during 1W1P	lb/year reduction	Buffers - field edge	Increase acreage of field borders to complement existing conservation management systems. Promote upland buffer restoration Promote vegetated buffers	1,040	acres treated	1,110 lb/yr	
						TOTAL Phosphoru	s load reduction		Approx	. 2,380 lb/yr	

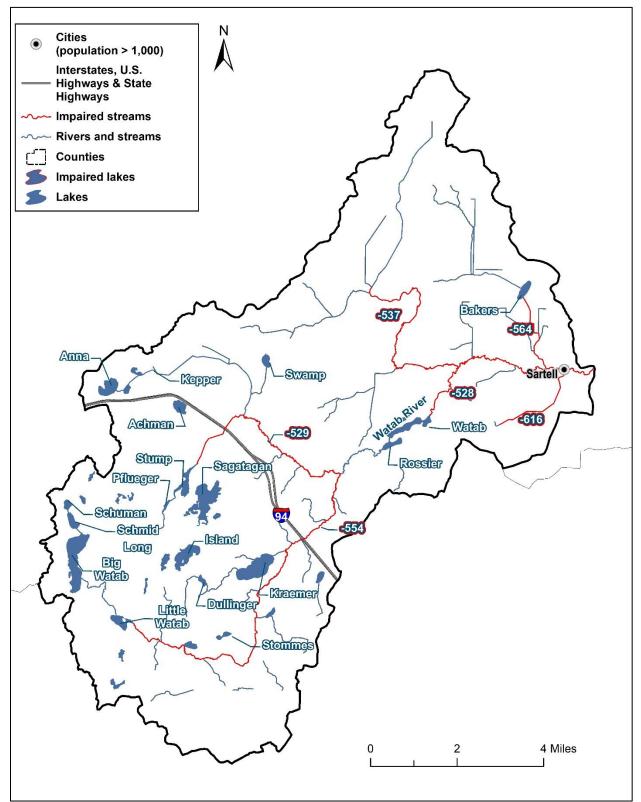


Figure 47. Watab River Subwatershed (0701020106). See Table 20 for corresponding restoration and protection strategies.

					Watab	River (0701020106)					
			Water q	uality			Strategies to	achieve final	water qu	uality goal	
Waterbody (ID)	Location and upstream influence counties	Pollutant/ Stressor	Current WQ conditions	Milestone (optional)	Final WQ goal	Strategy type	BMP	AMPLE BMP s	unit	Estimated reduction (Ib/yr) as applicable	Notes
All	Morrison, Stearns, Todd	All	See Table 2 and Table 3	I	mplement strat	tegies and BMPs listed	d in the watershed v	wide table, as a	applicabl		
						Habitat and stream connectivity	Modify or replace road crossing at Pine Cone Rd. crossing	-	-	unknown	
						management	Reconnect floodplain	-	-	unknown	BMPs selected
	alte	Streamflow alteration, habitat	tion, fIBI 38.7	TBD during	fIBI 47		Riparian buffers	-	-	unknown	based on analyses provided in the
River				1W1P		Urban stormwater management	Decrease impervious surfaces within the watershed to reduce flashiness and support stream stability	-	-	unknown	MRS stressor identification report
		E. coli	Maximum monthly geomean: 300 org/100 mL	TBD during 1W1P	Maximum monthly geomean 126 org/100mL; flow regime reductions: 0-57%	Implement priority the Upper Mississi		MDL Impleme			
Watab River, North Fork (-529)	Stearns	E. coli	Maximum monthly geomean: 3,910 org/100 mL	TBD during 1W1P	Maximum monthly geomean 126 org/100mL; flow regime reductions: 34-74%	Implement priority a provided in the Up	actions for the Wata per Mississippi Riv Plan (MPC	er Bacteria TM			

Table 20. Restoration and Protection Strategies for the Watab River Subwatershed (0701020106)

					Watab	River (0701020106)					
			Water q	uality			Strategies to	achieve final	water qu	ality goal	
Waterbody (ID)	Location and upstream influence counties	Pollutant/ Stressor	Current WQ conditions	Milestone (optional)	Final WQ goal	Strategy type	BMP	AMPLE BMP s	Unit	Estimated reduction (lb/yr) as applicable	Notes
County Ditch 12 (-537)	Stearns	E. coli	Maximum monthly geomean: 217 org/100 mL	TBD during 1W1P	Maximum monthly geomean 126 org/100mL; flow regime reductions: 0-29%	Implement priority a in the Upper Mississ		TMDL Implem		ed provided	
		Longitudinal connectivity,	fIBI 28-40	TBD during	fIBI 42	Habitat and stream connectivity	Modify or replace culverts at the CSAH75 crossing and private road crossings identified by MPCA 2019b	-	-	unknown	BMPs selected based on analyses provided in the MRS stressor identification report.
Watab River, South Fork (-554)	Stearns	habitat		1W1P		management	Improve instream habitat by increasing coarse substrate, and heterogenity of stream facets	-	-	unknown	See Figure 71 in the stressor identification report.
		E. coli	Maximum monthly geomean: 407 org/100 mL	TBD during 1W1P	Maximum monthly geomean 126 org/100mL; flow regime reductions: 44-71%	Implement priority a provided in the Up	actions for the Wata per Mississippi Riv Plan (MPC	er Bacteria TM			
County Ditch 13 (-564)	Stearns	DO	Insufficient information	TBD during 1W1P	-	Stream restoration and stabilization	Address channel instability (bank erosion, widening, and incision)	-	-	unknown	See Figure 71 in the MRS stressor identification report

					Watab	River (0701020106)					
			Water o	uality				achieve final		ality goal	
Waterbody (ID)	Location and upstream influence counties	Pollutant/ Stressor	Current WQ conditions	Milestone (optional)	Final WQ goal	Strategy type	EX/ BMP	AMPLE BMP s	Unit	Estimated reduction (lb/yr) as applicable	Notes
County Ditch 13 (-564) (continued)	Stearns	E. coli	Maximum monthly geomean: 553 org/100 mL	TBD during 1W1P	Maximum monthly geomean 126 org/100mL; flow regime reductions: 45-77%	Implement priority a in the Upper Mississ	ctions for the Cour ippi River Bacteria 2016	TMDL Implem	owatersh entation	ed provided	
						Point source control	Meet/maintain N	PDES permit li	mit per N	IRSW TMDL	No reductions required in the MRS TMDL
			Maximum monthly				Prioritize wetland restoration, construction for treatment of urban runoff	High	-	unknown	
County				TBD	Maximum monthly geomean		Create long- term education and outreach plan for stormwater management	High	-	unknown	
Ditch 16 (-616)	Stearns	E. coli	geomean: 547 org/100 mL	during 1W1P	126 org/100mL; 77%	Urban stormwater runoff control	Develop BMP guidebook for residents	Not applicable	-	unknown	
			geomean: 547		reduction		Develop reverse fee system to fund and incentivize local stormwater BMPS	Not applicable	-	unknown	
							Increase all stormwater practices to meet TMDL and permit conditions	High	-	unknown	

					Watab	River (0701020106)					
			Water q	uality							
Waterbody (ID)	Location and upstream influence counties	Pollutant/ Stressor	Current WQ conditions	Milestone (optional)	Final WQ goal	Strategy type	BMP	AMPLE BMP s	unit	Estimated reduction (lb/yr) as applicable	Notes
County Ditch 16 (-616) (continued)			<i>E. coli</i> <i>E. coli</i> <i>547</i>	TBD during			Continue to improve outreach and education plan for increasing stormwater BMP/LID, including development of demonstration projects	High	-	unknown	
	Stearns	E. coli			Maximum monthly geomean 126 org/100mL;	Urban stormwater runoff control (continued)	Promote bioretention, bioinfiltration basins, rain gardens, and constructed stormwater ponds	High	-	unknown	
		org/100 mL	77	77% reduction		Regulate or limit impervious surfaces and allowable mitigation in new development	High	-	unknown		
							Stormwater Retrofit analysis	Not applicable	-	unknown	
						Develop supplemental street sweeping plan	Not applicable	-	unknown		

Watab River (0701020106)												
			Water q	uality		Strategies to achieve final water quality goal						
Waterbody (ID)	Location and upstream influence counties	Pollutant/ Stressor	Current WQ conditions	Milestone (optional)	Final WQ goal	Strategy type	EX/ BMP	AMPLE BMP s	Unit	Estimated reduction (Ib/yr) as applicable	Notes	
				TBD during 1W1P			Create minimum develo	i impact desigr opment along l		ds for future	See Figure 39 for	
		ns All				Lake Management	Nati	ve shoreline re	estoration		area of development	
							Develop and imp				pressure	
							Educate resider and low impa					
Big Watab	Stearns		See Table			Add cover crops for living cover in fall/spring	developments Increase late-season cover plantings with corn and soybeans to reduce sediment loss, improve nutrient uptake Conservation tillage					
(73-0102- 00)			All 3			Tillage/ residue management						
						Buffers - field edge	Develop an ordinance to increase buffers					
							Increase acrea existing cons					
							Promote upland buffer restoration					
							Encourage vegetated buffers					
						Nutrient Management	Reduced	application and	d incorpo	ration		
				ble TBD during 1W1P			Conversion of o	conventional p rotational gra		prescribed		
Kraemer Lake (73-	Stearns	All	See Table		-	Pasture management		re improveme		•		
0064-00)			3				Exclusion fence and near stream alternate wa		wetlands pecially c	and support		

					Watab	River (0701020106)						
			Water q	uality		Strategies to achieve final water quality goal						
	Location				I) goal Strategy type		EXAMPLE BMP scenario				Notes	
Waterbody (ID)	and upstream influence counties	Pollutant/ Stressor	Current WQ conditions	Milestone (optional)		ВМР	Amount	Unit	Estimated reduction (lb/yr) as applicable			
		tearns All		TBD during 1W1P	-	Pasture	Promote pract	Promote practices that reduce stocking density				
			See Table 3			management	Improve coordination of smaller facilities with local ordinances related to hose pumps, dugouts, and wells					
Kraemer Lake (73- 0064-00)	Steerne					Septic system	Improve subsurface sewer treatment systems (SSTS) compliance inspections					
(continued)	Steams						SSTS ordinance development and updates					
						improvements	In	nprove failing \$	SSTSs			
							Ordinance development and improved regulation of SSTS sludge land application					
					Conduct risk	systems						

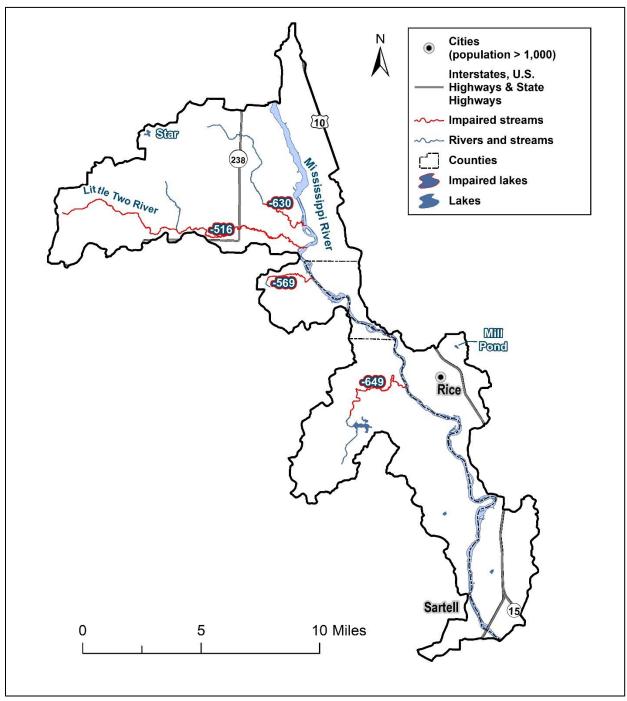


Figure 48. City of Sartell Subwatershed (0701020107). See Table 21 for corresponding restoration and protection strategies.

				City	of Sartell-Miss	issippi River (070102	20107)					
			Water	quality			Strategies to achi	eve final wat	er qualit	y goal		
Waterbody (ID)	Location and upstream influence counties	Pollutant/ Stressor	Current WQ conditions	Milestone (optional)	Final WQ goal	Strategy type	EXAM BMP	PLE BMP so	enario Unit	Estimated reduction (Ib/yr) as applicable	Notes	
All	Morrison, Stearns, Todd	All	See Table 2 and Table 3		Implement strategies and BMPs listed in the watershed wide table, as applicable.							
Little Two River (-516)	Morrison	E. coli	Maximum monthly geomean: 834 org/100mL	TBD during 1W1P Maximum monthly geomean 126 org/100mL; flow regime reductions: 0 -86% Implement priority actions for the Little Two River subwatershed provided in the Upper Mississippi River Bacteria TMDL Implementation Plan (MPCA 2016)								
		Morrison Longitudinal fIBI				Stream restoration and stabilization	Remeander channelized sections using natural desig n	-	-	-	BMPs selected based on analyses	
Hazel Creek (-569)	Morrison			TBD during 1W1P	fIBI 42	Habitat and stream connectivity management	Modify or replace culvert along Great River Rd. for fish passage	-	-	-	provided in the MRS stressor identification	
(-509)							Further investigate cause of low stream flows to determine if caused from anthropogenic activity	-	-	-	report. See Figure 37 in the Stressor Identification Report for altered streams map	
							Feedlot runoff reduction/treatment	High	-	unknown		
Hay Creek (-630)	Morrison	monthly	geomean: 386 org/100	TBD during 1W1P	Maximum monthly geomean 126 org/100mL; 84%	Feedlot runoff controls	Provide funding for small operations to reduce runoff and improve treatment, especially near waters of the state	High	-	unknown		
			mL		reduction		Feedlot manure/ runoff storage addition	High	-	unknown		

Table 21. Restoration and protection strategies for the City of Sartell–Mississippi River Subwatershed (0701020107)

				City	of Sartell-Miss	issippi River (07010)	20107)				
			Water	quality	r	Strategies to achieve final water quality goal					
Waterbody (ID)	Location and upstream influence counties	Pollutant/ Stressor	Current WQ conditions	Milestone (optional)	Final WQ goal	Strategy type	ВМР	PLE BMP so	unit	Estimated reduction (lb/yr) as applicable	Notes
							Increase rainwater diversion practices	High	-	unknown	
							Improve inter- agency coordination of feedlot inspections and record keeping requirements	High	-	unknown	
		son <i>E. coli</i> <i>Bison E. coli</i> <i>Bison</i> <i>Bison</i> <i>Bison</i> <i>Bison</i> <i>Bison</i> <i>Bison</i> <i>Bison</i> <i>Bison</i> <i>Bison</i> <i>Bison</i> <i>Bison</i>			Maximum monthly geomean 126 org/100mL; 84% reduction		Feedlot relocation/ retirement	High	-	unknown	
							Promote practices that reduce stocking density	High	-	unknown	
			monthly	TBD during 1W1P		Feedlot runoff controls (continued)	Total confinement facilities	High	-	unknown	
Hay Creek (-630) (continued)	Morrison		386 org/100				Feed storage in silos/grain bins or on impervious surfaces	High	-	unknown	
							Storage of process wastewater in tank/manure pits	High	-	unknown	
							Improved record keeping and mapping of existing risks	High	-	unknown	
							Improve process/regulations for siting of stockpiles. Ensure that soil type and quality are considered	High	-	unknown	

			Water		of Sartell-Miss	Strategies to achieve final water quality goal						
	Landan						EXAMPLE BMP scenario					
Waterbody (ID) in	Location and upstream influence counties	and Pollutant/ Current Milestone (optional) Stressor conditions	Final WQ goal	Strategy type	ВМР	Amount	Unit	Estimated reduction (lb/yr) as applicable				
							Improve subsurface sewer treatment systems (SSTS) compliance inspections	High	-	unknown		
				TBD during 1W1P		Septic system improvements	SSTS ordinance development and updates	High	-	unknown		
					Maximum monthly geomean 126 org/100mL; 84% reduction		Improve failing SSTSs	Low	-	unknown		
							Ordinance development and improved regulation of SSTS sludge land application	Low	-	unknown		
			Maximum monthly				Conduct risk assessment of septic systems	Low	-	unknown		
Hay Creek (-630)	Morrison		acomoon:				Improve septic systems	Low	-	unknown		
(continued)							Conversion of conventional pasture to prescribed rotational grazing	High	-	unknown		
							Support pasture improvement and silvopasture	High	-	unknown		
			Pasture management	Exclusion fencing and livestock access control in and near streams, lakes, and wetlands and support alternate water supply	High	-	unknown					
							Promote practices that reduce stocking density	High	-	unknown		

				City	of Sartell-Miss	<mark>issippi River (07010</mark>	20107)				
			Water	quality			y goal				
	Location				Final WO		EXAM	Estimated	Notes		
Waterbody (ID)	and upstream influence counties	Pollutant/ Stressor	Current WQ conditions	Milestone (optional)	Final WQ goal	Strategy type	ВМР	Amount	Unit	reduction (lb/yr) as applicable	
						Point source control	Meet/maintain NPD	ES permit lim	nit per MR	SW TMDL	No reductions required in the MRS TMDL
							Feedlot runoff reduction/treatment	High	-	unknown	
					Maximum monthly		Provide funding for small operations to reduce runoff and improve treatment, especially near waters of the state	High	-	unknown	
							Feedlot manure/ runoff storage addition	High	-	unknown	
	Stearns <i>E. coli</i>		Maximum monthly				Increase rainwater diversion practices	High	-	unknown	
Stony Creek (-649)		geomean: 633 org/100 mL	TBD during 1W1P	geomean 126 org/100mL; 80% reduction	Feedlot runoff controls	Improve inter- agency coordination of feedlot inspections and record keeping requirements	High	-	unknown		
							Feedlot relocation/ retirement	High	-	unknown	
							Promote practices that reduce stocking density	High	-	unknown	
							Total confinement facilities	High	-	unknown	
							Feed storage in silos/grain bins or on impervious surfaces	High	-	unknown	
							Storage of process wastewater in tank/manure pits	High	-	unknown	

			Water	-		<mark>issippi River (07010</mark>		ovo final wot		v goal										
			water	quality	[Strategies to achieve final water quality goal EXAMPLE BMP scenario														
Waterbody (ID)	Location and upstream influence counties	Pollutant/ Stressor	Current WQ conditions	Milestone (optional)	Final WQ goal	Strategy type	ВМР	Amount	Unit	Estimated reduction (lb/yr) as applicable	Notes									
							Improved record keeping and mapping of existing risks	High	-	unknown										
										Feedlot runoff controls (continued)	Improve process/regulations for siting of stockpiles. Ensure that soil type and quality are considered	High	-	unknown						
			Maximum monthly		Maximum monthly		Prioritize wetland restoration, construction for treatment of urban runoff	High	High - High - High - Not Not Not	unknown										
Stony Creek (-649) (continued)	Stearns	E. coli	geomean: 633 org/100 mL	TBD during 1W1P	geomean 126 org/100mL; 80% reduction		Create long-term education and outreach plan for stormwater management	High	-	unknown										
															Urban stormwater runoff control	Develop BMP guidebook for residents	Not applicable	-	unknown	
										Develop reverse fee system to fund and incentivize local stormwater BMPS	Not applicable	-	unknown							
							Increase all stormwater practices to meet TMDL and permit conditions	High	-	unknown										

			Water	-	. ourton midd	<mark>issippi River (07010</mark> 2		eve final wat	er qualit	v goal			
			Water	quanty			Strategies to achieve final water quality goal EXAMPLE BMP scenario						
Waterbody (ID)	Location and upstream influence counties	Pollutant/ Stressor	Current WQ conditions	Milestone (optional)	Final WQ goal	Strategy type	BMP	Amount	Unit	Estimated reduction (lb/yr) as applicable	Notes		
Mavimum		Continue to improve outreach and education plan for increasing stormwater BMP/LID, including development of demonstration projects	High	-	unknown								
		Movierum	Urban stormwater runoff control	Promote bioretention, bioinfiltration basins, rain gardens, and constructed stormwater ponds	demonstration projects - Promote bioretention, bioinfiltration basins, rain High - unknown gardens, and constructed stormwater ponds - Regulate or limit impervious surfaces and -								
Stony Creek (-649) (continued)	Stearns	E. coli	Maximum monthly geomean: 633 org/100 mL	TBD during 1W1P	Maximum monthly geomean 126 org/100mL; 80% reduction		Regulate or limit impervious surfaces and allowable mitigation in new development	High	-	unknown			
							Stormwater Retrofit analysis	Not applicable	-	unknown			
							Develop supplemental street sweeping plan	Not applicable	-	unknown			
						Septic system	Improve subsurface sewer treatment systems (SSTS) compliance inspections	High	-	unknown			
								improvements	SSTS ordinance development and updates	High	-	unknown	
							Improve failing SSTSs	Low	-	unknown			

				City	of Sartell-Miss	ississippi River (0701020107)							
			Water of	quality		Strategies to achieve final water quality goal							
	Location						EXAM	Notes					
Waterbody (ID)	and upstream influence counties	Pollutant/ Stressor	Current WQ conditions	Milestone (optional)	Final WQ goal	Strategy type	ВМР	Amount	Unit	Estimated reduction (lb/yr) as applicable			
						Septic system	Ordinance development and improved regulation of SSTS sludge land application	Low	-	unknown			
						improvements	Conduct risk assessment of septic systems	Low	-	unknown			
					1\A/1 D 126		Improve septic systems	Low	-	unknown			
Stony Creek	0	E. coli	Maximum monthly geomean:	TBD during 1W1P		monthly geomean		Conversion of conventional pasture to prescribed rotational grazing	High	-	unknown		
(-649) (continued)	Stearns		633 org/100 mL		80% reduction		Support pasture improvement and silvopasture	High	-	unknown			
						Pasture management	Exclusion fencing and livestock access control in and near streams, lakes, and wetlands and support alternate water supply, especially on small operations	High	-	unknown			
							Promote practices that reduce stocking density	High	-	unknown			

3.4. Climate protection co-benefit of strategies

Many agricultural BMPs, which reduce the load of nutrients and sediment to receiving waters also act to decrease emissions of greenhouse gases (GHGs). Agriculture is the third largest emitting sector of GHGs in Minnesota. Important sources of GHGs from crop production include the application of manure and nitrogen fertilizer to cropland, soil organic carbon oxidation resulting from cropland tillage, and carbon dioxide emissions from fossil fuel used to power agricultural machinery or in the production of agricultural chemicals. Reduction in the application of nitrogen to cropland through optimized fertilizer application rates, timing, and placement is a source reduction strategy; while conservation cover, riparian buffers, vegetative filter strips, field borders, and cover crops reduce GHG emissions as compared to cropland with conventional tillage. Additional information about GHG emission reduction from agricultural BMPs is summarized in this MPCA report:

https://www.pca.state.mn.us/air/agriculture-and-climate-change-minnesota.

The U.S. Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS) developed Comet Planner, a ranking tool for cropland BMPs that can be used by local units of government to consider ancillary GHG effects when selecting BMPs for nutrient and sediment control (http://www.comet-planner.com/). Practices with a high potential for GHG avoidance include conservation cover, forage and biomass planting, no-till and strip-till tillage, multi-story cropping, nutrient management, silvopasture establishment, other tree and shrub establishment, and shelterbelt establishment. Practices with a medium-high potential to mitigate GHG emissions include contour buffer strips, riparian forest buffers, vegetative buffers and shelterbelt renovation. A longer, more detailed assessment of cropland BMP effects on GHG emission (NRCS et al. no date) can be found at http://comet-planner.nrel.colostate.edu/COMET-Planner_Report_Final.pdf.

4. Monitoring plan

There are many monitoring efforts in place in the MRSW. Several key monitoring programs will provide, subject to resource availability and priorities, the information to track trends in water quality and evaluate compliance with TMDLs and milestones for WRAPS implementation:

- Intensive monitoring and assessment at the HUC-8 watershed scale associated with Minnesota's Watershed Approach to Restoring and Protecting Water Quality. This monitoring effort is conducted approximately every 10 years for each HUC-8. An outcome of this monitoring effort is the identification of waters that are impaired (i.e., do not meet standards and need restoration) and waters in need of protection to prevent impairment. Over time, condition monitoring can also identify trends in water quality. This helps determine whether water quality conditions are improving or declining, and it identifies how management actions are improving the state's waters overall. See Section 2.1 above.
- The MPCA's <u>WPLMN</u> measures and compares data on pollutant loads from Minnesota's rivers and streams and tracks water quality trends. WPLMN data will be used to assist with assessing impaired waters, watershed modeling, determining pollutant source contributions, developing watershed and water quality reports, and measuring the

Two young anglers enjoy an evening on Cedar Lake (Morrison County) – Photo courtesy of Gary Roerick

effectiveness of water quality restoration efforts. Data are collected along major river main stems, at major watershed (i.e., HUC-8) outlets to major rivers, and in several subwatersheds. This long-term monitoring program began in 2007. See Section 2.2.2 above.

- Implementation monitoring is conducted by both BWSR (i.e., eLINK) and the United States Department of Agriculture. Both agencies track the locations of BMP installations. Data is displayed on the MPCA's "Healthier Watersheds" webpage.
- <u>The Sentinel Lakes Monitoring Program</u> is an intensive, long-term lake ecosystem monitoring program created to detect and understand the physical, chemical and biological changes occurring in Minnesota's lakes. Cedar Lake in Morrison County is included in this monitoring program.
- Discharges from permitted municipal and industrial wastewater sources are reported through discharge monitoring records; these records are used to evaluate compliance with NPDES/SDS permits. Summaries of discharge monitoring records are available through the MPCA's

<u>Wastewater Data Browser</u>. The MPCA's "Healthier Watersheds" webpage also displays information on wastewater discharges.

 The <u>Citizen Surface Water Monitoring Program</u> is a network of volunteers who make monthly lake and river transparency readings. Several dozen data collection locations exist within the MRSW. This data provides a continuous record of one water quality parameter (transparency/turbidity) throughout much of the watershed and can be found at the following webpage: https://www.pca.state.mn.us/water/volunteer-monitoring-reports-and-data

Citizen Lake Monitor Volunteers using Secchi Disks to measure lake clarity.

Additional monitoring recommendations for the MRSW are outlined below.

As recommended in the Mississippi River–Sartell TMDL:

- Expanded nutrient, chlorophyll-*a*, and DO monitoring on the upstream lakes in the Two Rivers Lake and Platte Lake watersheds including Schwinghammer, Pelican, Little Pine, and Pine Lake, and the many small lakes in the Platte Lake watershed to better understand potential internal loading to Two Rivers Lake and Platte Lake.
- Additional monitoring for segments that were deferred in the TMDL (County Ditch 13 [564] and South Two River [524]).
- Targeted and or selective microbial source tracking to determine source of *E. coli* impairments.

As recommended in the Mississippi River Stressor Identification Report:

- Further investigation of the impact of metals, specifically iron, on fish and macroinvertebrate IBI as no conclusive determinations could be made during the stressor identification process.
- Conduct assessment of state and local government implementation of BMPs on public lands to determine if an appropriate example is being set for private landowners to do the same.
- To better understand the role eutrophication, low DO, and streamflow alteration have on the aquatic life impairment on Big Mink Creek (647) and to determine if a DO TMDL is necessary on this segment, the following monitoring is recommended:

- Continuous multi-parameter sonde deployments
- Paired samples of total iron, phosphorus, and biochemical oxygen demand
- Continuous streamflow data

It is also recommended to pair as much data collection as possible on Big Mink Creek (647) with a comparable stream that sustains a thriving macroinvertebrate community, such as the Skunk River.

- Further monitoring to evaluate the application of atrazine-containing herbicides in the watershed and their potential impacts on aquatic life.
- Additional TP sampling and continuous DO monitoring to determine if eutrophication is occurring and stressing aquatic life on Bunker Hill Creek (-511).
- Monitor impacts of low DO in County Ditch 13 on downstream Watab River to ensure aquatic life protection and prevent water quality degradation.

As recommended by the Local Partner Team:

- Coordinate inventory and mapping activities to improve efficiency and encourage interagency coordination (culverts, ditches, land application of manure on cropland, etc.).
- Monitor chloride levels in WWTF discharges.
- Continued monitoring on Little Rock Lake, Little Rock Creek, Bunker Hill Creek, and Sucker Creek to better understand impacts of implemented BMPs on water quality in the Little Rock Lake subwatershed during all flow zones.
- Conduct trend analysis on other impaired waters, similar to the Little Rock Lake trend analysis in Section 2.2.3, to guide further implementation efforts.
- Conduct monitoring on Two Rivers, Clear, Big Watab, Spunk Chain, and Kraemer Lakes to provide additional data for trend analysis, and to better understand impacts of implemented BMPs on water quality in these waters.

Shoreline of Little Rock Lake after the 2019 drawdown. Photo from Benton SWCD.

5. References and further information

Benton SWCD (Soil and Water Conservation District). 2011. Little Rock Lake Nutrient TMDL. Document number wq-iw8-31e. Document available at: <u>https://www.pca.state.mn.us/sites/default/files/wq-iw8-31e.pdf</u>

Benton SWCD (Soil and Water Conservation District). 2013. Little Rock Lake and Creek Watershed Protection and Improvement Plan. Prepared for the Minnesota Pollution Control Agency. Document number wq-iw8-31c. Document available at: <u>https://www.pca.state.mn.us/sites/default/files/wq-iw8-31c.pdf</u>

Benton SWCD (Soil and Water Conservation District). 2015. Little Rock Creek Watershed Total Maximum Daily Load Report: Dissolved Oxygen, Nitrate, Temperature and Fish Bioassessment Impairments. Prepared by Barr Engineering. Document number wq-iw8-09e. Document available at: <u>https://www.pca.state.mn.us/sites/default/files/wq-iw8-09e.pdf</u>

DNR (Minnesota Department of Natural Resources) 2018. Sustainable Use of Groundwater in the Little Rock Creek Area. September 2018. Document available at: https://files.dnr.state.mn.us/waters/groundwater_section/sustainability/littlerock/lrc-action-plan.pdf

MPCA (Minnesota Pollution Control Agency). 2007. Minnesota Statewide Mercury Total Maximum Daily Load. Document number wq-iw4-01b. Document available at:

http://www.pca.state.mn.us/index.php/water/water-types-and-programs/minnesotas-impaired-watersand-tmdls/tmdl-projects/special-projects/statewide-mercury-tmdl-pollutant-reduction-plan.html

MPCA (Minnesota Pollution Control Agency) 2014. Upper Mississippi River Bacteria TMDL Study and Protection Plan. Prepared by Emmons & Oliver Resources, Inc. for the Minnesota Pollution Control Agency and Minnesota Department of Health. Document number wq-iw8-08e. Document available at: https://www.pca.state.mn.us/sites/default/files/wq-iw8-08e.pdf

MPCA (Minnesota Pollution Control Agency) 2016. Upper Mississippi River Bacteria TMDL Implementation Plan. Document number wq-iw8-08c. Document available at: <u>https://www.pca.state.mn.us/sites/default/files/wq-iw8-08c.pdf</u>

MPCA (Minnesota Pollution Control Agency) 2017. Guidance Manual for Assessing the Quality of Minnesota's Surface Waters for Determination of Impairment: 305(b) Report and 303(d) List: 2018 Assessment and Listing Cycle. Document number: wq-iw1-04j. October 2017. Document available at: https://www.pca.state.mn.us/sites/default/files/wq-iw1-04j.

MPCA (Minnesota Pollution Control Agency) 2019a. Mississippi River–Sartell Monitoring and Assessment Report. Document number wq-ws3-07010201b. May 2019. Document available at: <u>https://www.pca.state.mn.us/sites/default/files/wq-ws3-07010201b.pdf</u>

MPCA (Minnesota Pollution Control Agency) 2019b. Mississippi River – Sartell Watershed Stressor Identification Report. Document number: wq-ws5-07010201). September 2019. Document available at: <u>https://www.pca.state.mn.us/sites/default/files/wq-ws5-07010201.pdf</u>

RESPECT. 2015. Two Rivers Lake Targeted Conservation Practice Plan. Topical Report RSI-2492. Prepared by RESPEC for Stearns County Soil and Water Conservation District. March, 2015.

Mississippi River–Sartell WRAPS Report

Tetra Tech. 2018. Upper Mississippi River Sartell Watershed HSPF Model Recalibration Memorandum. October 31, 2018.

Tetra Tech. 2020. Draft Mississippi River-Sartell Watershed Total Maximum Daily Load. Document number wq-ws4-78a.

6. Appendices

Appendix A. Stream and Lake Priority Protection Effort

AUID or Waterbody ID (WID)	Stream Name	Reach Length (mi)	Drainage Area (mi ²)	TALU	AQL Vulnerable Designation? (Y/N)	Cold/ Warm	Community Nearly Impaired	Riparian Risk	Watershed Risk	Current Protection Level	Protection Priority Rank	Protection Priority Class
07010201-545	Platte River	13.9	447.8786	Exceptional	N	warm	neither	high	high	med/low	10.5	A
07010201-613	Krain Creek	2.56	11.2047	General	N	warm	one	high	high	low	6	Α
07010201-523	Two River	5.58	154.6454	General	N	warm	one	high	high	med/low	7	Α
07010201-529	Watab River, North Fork	5.79	20.40478	General	Y	warm	one	med/high	high	low	7	Α
07010201-546	Platte River	3.88	398.2071	General	Ν	warm	one	high	high	med/low	7	Α
07010201-525	Spunk Creek	23.59	81.20324	General	Ν	warm	one	med/high	high	med/low	8	Α
07010201-524	North Two River	22.47	49.22264	General	Ν	warm	neither	high	high	low	9	Α
07010201-537	County Ditch 12	6.16	20.03649	General	Ν	warm	neither	high	high	low	9	Α
07010201-636	Unnamed creek	4.4	11.82484	General	Υ	warm	one	med/high	medium	low	9	Α
07010201-649	Stony Creek	5.57	17.01517	General	N	warm	neither	high	high	low	9	Α
07010201-521	Skunk River	14.71	137.4461	General	N	warm	neither	high	med/high	low	10.5	Α
07010201-630	Hay Creek	3.26	17.52739	General	N	warm	neither	high	high	med/low	10.5	Α
07010201-637	Unnamed creek	2.19	14.59842	General	N	warm	neither	high	med/high	low	10.5	Α
07010201-516	Little Two River	16.19	27.12575	General	N	warm	neither	med/high	high	med/low	12	В
07010201-520	Skunk River	21.43	55.77618	General	N	warm	neither	med/high	med/high	low	12	В
07010201-639	Hillman Creek	13.96	46.05039	General	Y	warm	neither	med/high	med/high	low	12	В
07010201-633	Unnamed creek	3.43	12.73625	General	N	warm	neither	medium	medium	low	15	В
07010201-632	Unnamed creek	3.92	2.88202	Modified	N	warm	one	med/high	high	low	7	Α
07010201-622	Unnamed creek	4.19	9.685118	Modified	N	warm	one	med/high	high	med/low	8	Α
07010201-621	Unnamed creek	0.46	15.37171	Modified	N	warm	neither	high	high	med/low	10.5	Α

Lake ID	Lake_Name	Depth Class	LAKE Acres	Watershed Acres	% Disturbed Land Use	Mean TP (ug/L)	Years TP	Mean Secchi (m)	Presence of Water Clarity Trend	Predicted Pre- disturbance TP (ug/l)	Target TP (ug/L)	Predicted Load (pounds/year)	Load Target (pounds/year)	Load Goal (pounds/year)	Load Reduction Goal (pounds/year)	Sensitivity Index (S)	LPSS Priority Score	LPSS Priority Class	Lake of Biological Significance
49-0005-00	Peavy	deep	140	586	6%	10.5	4	4.40	Insufficient data	10	9	50	43	47	2	80	14	А	
									No evidence										
73-0097-00	Kreigle	deep	102	322	16%	10.9	6	5.02	of trend No	9	10	16	14	15	1	117	27	A	High
72 0122 00	Oshatta		40	102	040/	12.0	2	445	evidence	-	12	-	6	<i>c</i>	0	122	60		N de alevente
73-0122-00		deep	40	103	81%	12.6	2		of trend Improving	7	12	7	6	6	0	132	60	A	Moderate
49-0140-00	Cedar	deep	236	1,636	37%	14.8	11	4.07	trend Insufficient	12	10	115	80	109	6	45	61	A	Outstanding
73-0104-00	Island	deep	116	362	17%	14.8	2	4.47	data Improving	12	13	23	21	22	1	84	24	А	High
73-0102-00	Big Watab	deep	246	2,070	13%	15.1	8	5.28	trend	14	11	145	103	137	7	38	19	А	High
73-0101-00	Schmid	deep	38	281	6%	15.4	2	4.21		13	14	16	15	15	1	86	3	С	
73-0099-00	Minnie	deep	27	387	38%	16.3	2	4.07	Insufficient data	9	14	23	20	22	1	76	11	В	
73-0125-00		deep	47	139	25%	17.5	2		Insufficient data	12	17	10	10	10	1	89	15	А	
73-0123-00	Actimati	ueep	47	135	2370	17.5	2	4.00	No	12	17	10	10	10	1	65	13	A	
49-0024-00	Pierz	deep	189	2,781	55%	18.5	3	2.71	evidence of trend	16	17	177	167	168	9	26	40	А	
73-0126-00	Anna	deep	81	372	59%	18.7	2	3.64	Insufficient data	12	18	25	24	23	1	66	45	А	
	Sullivan	deep	1,103	34,153	9%	18.8	11	2.60	Improving trend	13	15	3,113	2,605	2,958	156	2	4	В	
		·							Improving										
73-0128-00	Middle Spunk	deep	236	17,364	65%	19.0	4	3.20	trend No	13	14	929	676	883	46	6	14	A	High
49-0015-00	Long	deep	126	723	21%	19.5	8	2.55	evidence of trend	19	18	94	86	89	5	37	20	А	Outstanding
									Improving										
	Lower Spunk	deep	179	19,638	24%	21.4	4		Insufficient	6	17	891	693	847	45	6	4	В	High
73-0127-00	Linneman	shallow	110	790	22%	21.5	2	2.78	data Improving	8	20	52	48	50	3	44	10	В	
73-0118-00	Pelican	deep	291	2,006	33%	22.8	10	3.56	trend No	15	19	186	155	177	9	23	35	А	High
72 0117 00	Pig Spunk	doop	415	14,832	25%	24.0	5	2 65	evidence of trend	20	21	1 022	922	981	53	5	o	В	High
73-0117-00		deep							Insufficient		21	1,032			52		8		підії
18-0016-00	Rock	shallow	203	4,524	6%	25.4	2	1.82	data Insufficient	24	24	540	506	513	27	8	2	С	
73-0166-00	Коор	deep	60	653	60%	26.1	2	4.10		9	24	65	59	62	3	38	20	А	
18-0009-00	Erskine	shallow	182	846	4%	26.1	4	1.63	data	25	26	140	139	133	7	23	3	С	
73-0100-00	Kalla	deep	106	12,056	13%	26.9	3	2.79		15	22	790	638	751	40	6	1	С	
									No evidence										
49-0019-00	Round	deep	130	35,682	8%	28.7	4	2.32	of trend	25	24	3,212	2,683	3,052	161	1	0	С	Outstanding

Lake ID	Lake_Name	Depth Class	LAKE Acres	Watershed Acres	% Disturbed Land Use	Mean TP (ug/L)	Years TP	Mean Secchi (m)	Presence of Water Clarity Trend	Predicted Pre- disturbance TP (ug/l)	Target TP (ug/L)	Predicted Load (pounds/year)	Load Target (pounds/year)	Load Goal (pounds/year)	Load Reduction Goal (pounds/year)	Sensitivity Index (S)	LPSS Priority Score	LPSS Priority Class	Lake of Biological Significance
									No evidence										
73-0092-00	Sagatagan	deep	227	886	15%	31.3	4	4.27	of trend	22	26	111	92	105	6	26	13	А	High
73-0064-00	Kraemer	deep	195	1,819	12%	33.6	11	1.87	Declining trend	16	30	223	198	212	11	15	32	А	
73-0004-00	Rideffiel	ueep	195	1,019	12/0	55.0	11	1.07	Insufficient	10	50	223	156	212	11	15	52	A	
18-0008-00	Twenty Two	shallow	164	1,409	3%	34.0	1	1.07	data	30	28	271	226	258	14	12	6	В	Outstanding
77 0010 00	N dia man		420	4 250	220/	277	-	2.00	Insufficient	20	22	102	454	470	9	47			N 4 a da va ta
77-0019-00	iviary	deep	129	1,250	33%	37.7	5	2.06	data Improving	20	32	183	154	173	9	17	11	В	Moderate
73-0136-00	Pine	deep	108	3,420	24%	39.5	4	2.29	trend	23	33	448	376	426	22	8	3	С	
									Declining										
18-0088-00	Platte	deep	1,663	21,151	16%	40.9	16	1.56	trend No	32	34	4,100	3,472	3,895	205	1	44	NA	Outstanding
									evidence										
73-0070-00	Watab	deep	97	35,623	47%	44.7	5	2.27	of trend	37	37	3,133	2,616	2,976	157	1	1	С	
72 0000 00	Ditte		111	0 220	270/	46.0	2	2.1.4	Insufficient data	20	45	0.00	017	010	40	2		P	
73-0098-00	Pitts	deep	114	9,228	37%	46.9	2	2.14	Insufficient	36	45	966	917	918	48	3	4	В	
49-0033-00	Popple	shallow	25	605	29%	71.0	1	0.90	data	47	59	115	93	109	6	12	2	С	
									No										
73-0072-00	Rossier	deep	37	33,878	29%	80.5	5	1.59	evidence of trend	38	67	4,687	3,877	4,453	234	1	0	С	
73-0072-00	RUSSIEI	ueep	57	55,070	25/0	80.5	5	1.59	Insufficient	50	07	4,087	3,877	4,455	234	1	0	L	
49-0025-00	Rice	shallow	339	251,957	19%	91.5	5	0.84	data	38	77	27,981	23,162	26,582	1,399	0	0	С	Outstanding
									No										
73-0138-00	Two Rivers	deep	583	37,791	25%	92.1	7	1.62	evidence of trend	63	77	8,445	7,146	8,023	422	0	1	NA	
		ucch		0,,,01	20/0	0212	•	2.02	Insufficient			0,110	.,	0,020			-		
49-0030-00	Pelkey	shallow	104	18,376	26%	105.3	3	1.05	data	96	105	3,632	3,615	3,450	182	1	0	С	
	Unnamed (Little Rock								No evidence										
05-0012-00	Channel)	shallow	153	70,033	56%	153.3	3	0.54	of trend	70	128	17,718	14,713	16,832	886	0	0	С	
									Insufficient										
49-0026-00	Skunk	shallow	370	110,379	6%	165.3	4	0.58	data	122	162	25,959	25,331	24,661	1,298	0	0	С	Outstanding
									No evidence										
05-0013-00	Little Rock	deep	1,311	66,123	38%	198.7	13	0.58	of trend	82	166	27,033	22,842	25,681	1,352	0	0	NA	

Appendix B. Mississippi River–Sartell Communication Plan

Mississippi River–Sartell WRAPS Report

Mississippi River–Sartell Watershed Communication Plan

November 2017

Authors and contributors:

Phil Votruba, MPCA Kaitlyn Taylor, Tetra Tech Jennifer Olson, Tetra Tech Andrea Plevan, Tetra Tech

Prepared for: Morrison Soil and Water Conservation District 16776 Herron Road Little Falls, MN 56345 *and* Minnesota Pollution Control Agency 7678 College Road, Suite 105 Baxter, MN 56425

Prepared by:

413 Wacouta Street, Suite 435 Saint Paul, MN 55101 www.tetratech.com

Table of Contents

Mississippi River–Sartell Watershed Communication Plan	1
Element 1: Goals and Objectives	2
Element 2: Partnering Organizations and Communication Subcommittee	3
Element 3: Key Audience Characterization	3
Element 4: Tailored Messages	5
Element 5: Effective Formats	8
Element 6: Efficient Delivery Mechanisms	. 10
Element 7: Evaluation Measures	. 10
Appendix A: Communication Materials (provided electronically)	A-1
Appendix B: Summary of Local Water Management Plans	B-1
Appendix C: Current and Past Water Quality Improvement Projects	C-1

Mississippi River–Sartell Watershed Communication Plan

Developing and implementing a successful, effective Watershed Restoration and Protection Strategy (WRAPS) for the Mississippi River–Sartell Watershed will require significant and meaningful stakeholder involvement and education. Providing consistent communication and education during all phases of the WRAPS—planning, development, and implementation—is key for developing meaningful involvement. The plan will serve as a working document that first outlines the major steps and actions needed to effectively communicate with key target audiences and among core team members during the WRAPS process. The plan is adaptive; as the WRAPS planning process develops, results from the evaluation process presented below can be used to refine and elevate the plan to include increased engagement and involvement with targeted audiences, if desired. Local partners (see Element 2) may use the plan as a guide for more specific and targeted messaging, and incorporate Elements 1 through 7 as outlined below into their existing communication activities.

The communication plan contains seven defined elements to ensure communication is targeted, effective, and efficient. The seven elements are as follows:

- Element 1: Goals and Objectives. These are the goals and objectives for involvement and education to support the WRAPS.
- Element 2: Partnering Organizations and Communication Subcommittee. This element lists the organizations with potential engagement with the WRAPS and its education, and recommends the formation of a subcommittee to lead initiatives.
- Element 3: Key Audience Characterization. This element identifies the priority audiences for each phase of the WRAPS process and provides details on how these audiences will receive information, other existing communication channels, and potential concerns.
- Element 4: Tailored Messages. Using information from Element 2, this element identifies messages to help raise awareness, encourage involvement, and promote implementation support. The objective is to create messages for the key target audiences that will resonate and achieve a result.
- Element 5: Effective Formats. The information about communication channels in Element 3 will also help to identify effective formats for conveying the messages developed under Element 4.
- Element 6: Efficient Delivery Mechanisms. Not all key target audiences get or want their information in the same manner. Some audiences might obtain their information through agency or association newsletters. Others might prefer to attend a meeting or go to a website to learn more. The communication identifies a range of possible delivery mechanisms for distributing the formats with tailored messages to key target audiences.
- Element 7: Evaluation Measures. Evaluating the success of the communication plan will be one way to also help measure the success of the WRAPS process. Tracking which stakeholders have played a role in the process and how their perceptions, awareness, and involvement has changed over time will help anticipate who will support implementation recommendations to improve water quality.

This communication plan includes supplementary information:

- Communication materials (Appendix A, provided electronically): These materials are intended for use by local partners and other organizations implementing the plan.
- Review of local water plans (Appendix B): Provides information on county priorities and future management activities in the watershed; to be used to inform communication and civic engagement.
- Current and past water quality improvement projects (Appendix C): Examples provided by SWCDs of projects that can be highlighted in communication efforts.

Element 1: Goals and Objectives

The primary objective of this effort is to lay a foundation on which to build inclusive conversations, strong collaborations, and engaged communities all focused on the protection and restoration of the surface waters within the Mississippi River–Sartell Watershed. This communication plan will:

- Identify a communications network
- Provide guidance and materials for watershed communications and events to local entities conducting civic engagement
- Support initial dialogues within the communities involved or interested in the watershed's
 protection and restoration
- Provide a general framework for local stakeholders to educate target audiences

Significant outcomes of these activities may be used to guide content and recommendations in the upcoming WRAPS report.

An Upper Mississippi–Brainerd/Sartell (MBS) Watersheds Civic Engagement Cohort ("Cohort") was sponsored by the MPCA in 2016–2017. This Cohort was provided through a partnership with the University of Minnesota Extension, which provided the training. The Cohort included partners from the Mississippi River–Brainerd watershed and complements the efforts of the Mississippi River–Sartell WRAPS project through the professional training and development of interested watershed partners in becoming civic engagement leaders within their respective watersheds. While the regular Cohort training sessions concluded in February 2017, the ongoing goal is to continue the communication among the Cohort members to help sustain the system of civic engagement support and information that was developed through the cohort sessions.

The goals of the MBS Watersheds Civic Engagement Cohort included:

- Explore and apply civic engagement research, skills, and practices in watershed restoration and protection efforts.
- Expand leadership confidence, capacity, and connections.
- Build a system of support through fellow cohort participants.
- Learn from other cohort participants.
- Reflect and collaborate to further authentic community engagement in the watersheds.

For more information on the Cohort, please contact the following MPCA staff:

- Bonnie Finnerty, MPCA Brainerd Regional Office, 218-316-3897 (Mississippi River–Brainerd watershed)
- Phil Votruba, MPCA Brainerd Regional Office, 218-316-3901 (Mississippi River–Sartell watershed)

The goal of the communication plan is raising awareness and ensuring broad involvement of key target audiences in developing, implementing, and evaluating actions to reduce pollutant loads through restoration and protection activities. To achieve the communication plan goal, specific objectives have been developed that will move stakeholders from awareness to education to action during all phases of the WRAPS.

Initial work will be focused on educating the public on watershed and water resource-related topics. The goal will be to create awareness of watershed and water quality issues that are relevant to the watershed landowners and stakeholders. A

Communication plan Goal:

Raising awareness and ensuring broad involvement of key target audiences in developing, implementing, and evaluating actions to reduce pollutant loads through restoration and protection activities.

key outcome of this phase will be a list of landowners and stakeholders that may be interested in future activities. Future activities will focus on informing and receiving input on the total maximum daily load study and WRAPS work.

Element 2: Partnering Organizations and Communication Subcommittee

Partners and collaboration are essential to effective communication and engagement strategies. There exist several organizations within the Mississippi River–Sartell Watershed that are already conducting water quality based civic engagement activities:

- SCWDs (Benton, Crow Wing, Mille Lacs, Morrison, Stearns, Todd)
- State agencies
 - Board of Water and Soil Resources
 - Minnesota Department of Agriculture
 - Minnesota Department of Health
 - Minnesota Department of Natural Resources (DNR)
 - Minnesota Pollution Control Agency (MPCA)
- University of Minnesota Extension
- Upper Mississippi River Source Water Protection Project
- Central Minnesota Water Education Alliance (CMWA)
- Mississippi Headwaters Board
- Minnesota Erosion Control Association
- The Nature Conservancy

These organizations are well suited to continue civic engagement activities related to this WRAPS and will therefore lead implementation of this plan. Opportunities to collaborate or piggy back on existing activities will be the optimal way to expand WRAPS-related civic engagement activities.

In addition to engaging the aforementioned partners and organizations in civic engagement activities, the formation of a subcommittee is recommended. The purpose of the subcommittee is to lead and coordinate communication activities, play a role in their evaluation, and determine if adaptations are needed, as seen in Element 7. This subcommittee should include, at a minimum, representatives from:

- Soil and water conservation districts (SWCDs) in the watershed
- MPCA
- Other interested educational organizations active in the watershed

Element 3: Key Audience Characterization

Identifying the key target audiences whose support is needed to achieve the goals and interim milestones provided in a WRAPS is the foundation for a strong

communication plan. Key target audiences, or stakeholders, are those who will likely have the most interest in the WRAPS because the proposed strategies have the potential to affect their resources and operations. General public awareness, education, and involvement are also critical elements of this communication plan in order to achieve stakeholder buy-in.

Key target audiences for the communication plan include:

- Urban landowners
- Shoreland landowners (including lake associations and golf courses)
- Livestock producers
- Corn, soybean, and other crop producers
- Irrigators
- Local officials and staff (city councils, township boards, county commissioners, SWCDs, Departments of Public Works, Park and Recreation Boards and departments, etc.)
- Recreational enthusiasts and tourists
- Hunting and fishing groups
- Lake Improvement Districts

Key Target Audience Characterization Questions:

- 1. What is the makeup of the target audience?
- 2. What are the key behaviors associated with this audience?
- 3. Which communication channels does this audience use?
- 4. What are the environmental concerns of this audience?

It is important to develop an understanding of the key target audiences. Detailed information about audience characteristics will influence message development, outreach format selection, involvement opportunities, and other aspects of the communication plan. Each primary audience was characterized using a series of questions; the following table contains the key target audience characterization matrix.

Key Target Audiences	Potential Water Quality Related Interests	Potential Audience Concerns	Communication Channels
Urban landowners	 Septic systems Pet waste Lawn maintenance Stormwater Household hazardous waste 	 Property values Aesthetics Livability for future generations Quality of fisheries Surface water recreation (e.g., kayaking and canoeing) Drinking water quality 	 Newspapers Social media Homeowners/neighborhood associations Community/civic groups Local media Local governments Soil and water conservation districts
Shoreland landowners	 Property maintenance Stormwater Septic systems Lake management Pet waste Stormwater 	 Streambank erosion Water quality issues (safety, aesthetics, quality) Property values Flooding Drinking water quality Quality of fisheries 	 Newspapers Social media Lake associations Community/civic groups Local media Local governments Soil and water conservation districts
Livestock producers	 Manure and nutrient management Feedlots Property maintenance (erosion, etc.) 	 Potential future regulation 	 Agri-Growth Council Commodity Groups Minnesota Agricultural Water Resource Center Minnesota Agricultural Water Quality Certification Program 4-H Groups
Corn, soybean, and other crop producers Irrigators	 Fertilizer Fungicides, herbicides, pesticides Tilling practices Water withdrawal 	 Erosion and losing valuable topsoil Loss of cropland acreage Potential future regulation Flooding Buffer law Potential future regulation 	 Agricultural associations Soil and Water Conservation Districts Word of mouth Radio and newspapers
Local officials and staff	 Water withdrawar Own and operate publicly owned treatment works (POTWs), public water supplies, storm sewer systems; develop and enforce local ordinances related to development and residential practices 	 Potential future regulation Additional programmatic and regulatory requirements Technical and financial support from state and federal partners to meet water quality goals Compliance with existing permits Property value and tax revenue Zonation and planning 	 Coalition of Greater Minnesota Cities League of Minnesota Cities Other local governments (e.g., SWCDs, counties, cities) State agencies Central Minnesota Water Education Alliance (CMWEA) Minnesota Association of Watershed Districts Association of Minnesota Counties

Key Target Audiences	Potential Water Quality Related Interests	Potential Audience Concerns	Communication Channels
Recreational enthusiasts Tourists	 Solid waste management Wastewater management Access 	 Public safety Adequate public access points Recreational opportunities Aesthetics 	 Websites Local media Public information providers Public signage Social media
Hunting and fishing groups Boaters	 Access waterbodies via streambanks Transport of aquatic invasive species 	 Healthy ecosystems to support hunting, fishing, and birdwatching activities 	 Social media Local Trout & Ducks Unlimited chapters Platte River Watershed Association Land trusts School fishing teams Canoe/kayak rental companies Outdoor gear retailers

There are additional audiences that can be important to communication and engagement activities:

- Fertilizer dealerships, crop advisers, regional account managers or area representatives
- Commodity groups, Farm Bureau, and agricultural loan officers
- County Feedlot Officers
- Future Farmers of America (FFA) groups
- Agricultural equipment dealers, especially tillage equipment
- Well drillers and associations
- Irrigation dealers, including variable rate technology and moisture sensor dealers

The subcommittee can determine if further targeting is needed for the above list. If so, an evaluation of water quality related programs and behavior, communication channels, and environmental and programmatic concerns similar to the previous table can be developed.

Element 4: Tailored Messages

The objectives of the communication plan involve raising awareness, educating people on the problems and solutions, and motivating people to participate in activities to manage water quality. To achieve these objectives, the communication plan will need to communicate effectively with the wide range of audiences with varying perspectives and concerns.

Specific messages will be developed to make the different audiences aware of the issues, encourage behavioral changes, and to support the WRAPS project. These messages should be repeated frequently to make an impact on the audience. Each audience will respond differently to the information presented. Tailored messages that resonate with and are considerate of the needs and concerns of each

Effective Tailored Messaging:

- 1. Repeats frequently
- 2. Resonates with targeted audience
- 3. Connects impacts of project to audience's life and experiences

audience are critical. The members of each audience must understand specifically how the information being presented affects them and relates to their daily lives.

Preliminary messages for various audiences have been developed based on available information and understanding of these audiences. Refinement to these messages may be needed as the project moves forward.

Key Target Audience: Urban Landowners

• Water quality issues in developed areas can be addressed through many good housekeeping practices. Water that flows into storm drains often travels directly to local water ways with no treatment, and with such power and velocity that it can ruin stream channels. Keep this storm

water cleaner by picking up after pets (pet waste management), keeping grass and leaf litter out of the street and gutter, only using fertilizer on lawns when needed and in appropriate amounts, implementing storm water mitigation projects such as rain barrels and rain gardens, sweeping up excess sidewalk salt and not overusing, and keeping motor oil or other greases out of driveways and roads. These simple, easy to implement activities can help improve water quality in your neighborhood and downstream.

• All of our actions can impact the health of the Mississippi River and the drinking water source for the residents of St. Cloud.

Key Target Audience: Shoreland landowners

- Each shoreland owner can help to improve water quality in their lake or stream/river by implementing good practices such as limiting fertilizer, maintaining (native) submergent and emergent aquatic plants, using sidewalk salt responsibly, implementing natural vegetation buffers that include native plantings, implementing storm water mitigation projects such as rain barrels and rain gardens, and making sure that septic systems or other onsite wastewater facilities are functioning properly.
- Shoreland owners are required to comply with shoreland regulations that are overseen by the DNR. Your local DNR representative or SWCD staff can help to provide information on good practices in shoreland areas.
- Activities in your lake or stream/river can have an effect on the overall health of the water resource. Consult the DNR for information on weed control, removal of trees and vegetation, and grading of shorelines to ensure a healthy resource in the future.

Key Target Audience: Livestock producers, crop producers, and irrigators

- Soil health and water quality are directly related.
- Conservation practices can help to protect farm fields from erosion and improve overall soil health, ultimately benefiting the producer in addition to water resources. These practices are often funded, in part, by state and federal dollars. Contact your local SWCD for more information.
- Conservation practices installed on cropland (e.g., conservation tillage, grassed waterways, filter strips, cover crops, etc.) are critical elements of a healthy farm and watershed. These voluntary practices will improve water quality both locally as well as regionally.
- Alternative water supplies and fencing to keep cattle from accessing streams can be funded in part by federal and state dollars. Contact the SWCD for more information.
- The Minnesota Agricultural Water Quality Certification Program (MAWQCP) is a
 voluntary opportunity for farmers and agricultural landowners to take the lead in implementing
 conservation practices that protect water. Those who implement and maintain approved farm
 management practices will be certified and in turn obtain regulatory certainty for a period of ten
 years.
- All wells in the state that withdrawal water for irrigation require a permit from the DNR (in addition
 to registering the well with the MN Department of Health). Information on irrigation wells is critical
 so that the DNR can make good recommendations that protect drinking water supplies and
 streamflow, especially in watersheds like the Mississippi between Brainerd and Sartell, where
 surface and groundwater are closely linked.
- The WRAPS project will work to focus implementation recommendations using practices that are going to be the most cost-effective for farmers. We need farmer input to ensure reasonable and effective outcomes.

Key Target Audience: Local officials and staff

• Protection of high quality resources is critical. Improved water quality is likely to positively affect property values, economic development, and tourism, improving the quality of life of your residents. Protecting and maintaining good water quality resources now will prevent spending time and money on future restoration.

- There are many waters in the watershed that are not meeting water quality standards and that are potentially affecting downstream drinking water sources. A watershed approach is needed to address these issues.
- Parks and outdoor recreation are an integral part of Minnesota pastime. Park management activities such as aquatic invasive species control, maintenance of adequate plant buffers between trails and water edges, and use of aquatic friendly herbicides can help improve park aesthetics, provide and protect wildlife habitat, and connect parks to broader watershed wide efforts to improve our waterways.
- Local government leadership is needed to ensure a successful WRAPS project that will translate into better water quality and quality of life for your residents and visitors.
- There are many operational changes, both small and large, that can be implemented to help support healthy, clean water ways in your area including improved leaf collection and street sweeping programs; reduced salt use and/or alternative de-icing methods (see the <u>MN Smart</u> <u>Salting program</u>); and changes to municipal properties including increased green infrastructure and natural vegetation, decreased use of fertilizer, and native plantings.

Key Target Audience: Recreational enthusiasts, tourists, hunting and fishing groups, and boaters

- Protect the water resources by eliminating waste—always use proper bathroom facilities, do not feed human food to wildlife, and leave no trash behind.
- Do not move or remove rocks from streams and rivers (e.g., to create pools, build crossings, or rock piles).
- Be careful when accessing waters; erosion of banks can cause impacts to fisheries.
- Streams and rivers may have high levels of harmful bacteria, make sure to looks for signs and other postings prior to swimming.
- Prevent the spread of harmful invasive species by following guidelines from your local DNR or county representatives.
- Follow no-wake zone rules to prevent scour and suspended sediment/pollutants.
- Properly dispose of excess fishing bait; do not dump it into the water body.

To better reach target audiences, the key messages above should be combined with other tools and resources that not only inform each key audience, but are found helpful. For example, urban land owners may be interested in learning about upcoming paint disposal days or weather updates on the best time to fertilize their lawn. Specific tools and resources for target audiences can be further identified by subcommittee and SWCDs, both of which have local stakeholder knowledge. A few examples of useful tools include:

- Soil and Water Conservation Districts Annual Tree Sales and Nitrate Testing Days
- <u>Central Minnesota Ag Weather Network</u> for weather and rainfall reports
- Minnesota DNR Geologic Atlas for GIS mapping data
- Crow Wing YouTube series on shoreline stabilization:
 - o How to restore your shore with coir logs
 - o How to restore your shore with native plants
 - o How to stabilize your shore with erosion control fabric
 - How to install a soil wrap slope break
 - How to stabilize your shore with live fascines
- Positive examples in the watershed of best management practices and water quality results

Element 5: Effective Formats

Multiple formats should be used by partnering organizations to reach key target audiences and to reinforce messages over time. These formats can be phased in over time. The quantitative goal for each format is provided below in italics. Appendix A provides content for communication activities and includes the following:

- Sartell watershed fact sheet (one-page)
- Sartell watershed project poster (poster sized)
- Watershed figures
- Water quality summary and maps
- Factsheets and educational materials

Fact sheet. A watershed-specific fact sheet was developed for use by local partners and stakeholders. The one-page fact sheet (see Appendix A) includes basic information about the watershed, overall WRAPS projects, and general water quality. The fact sheet also includes contact information.

The goal for the fact sheet will be to print and distribute at least 50 fact sheets (updated as needed) during 2017, and 75 in 2018.

Poster. A poster was developed to provide an overview of the watershed, WRAPS process, and water quality (see Appendix A). The poster can be used by local partners for stakeholder gatherings and other events to showcase the project.

The goal for the poster will be to present the project poster (updated as needed) at a minimum of 6 events during 2017, and 8 in 2018.

Websites. Current websites can be updated to include the fact sheet and poster information, along with other general watershed outreach information (see Appendix A). In addition, as updated information is developed or meetings are scheduled, these websites can be updated by local partners. Suggested websites include:

- Stearns SWCD (<u>www.stearnscountyswcd.net/</u>)
- Benton SWCD (<u>www.soilandwater.org</u>)
- Morrison SWCD (<u>www.morrisonswcd.org</u>)
- Crow Wing SWCD (<u>crowwingswcd.org/</u>)
- MPCA Mississippi–Sartell Watershed website (www.pca.state.mn.us/water/watersheds/mississippi-river-sartell)

In addition to these websites, the Central Minnesota Water Education Alliance (<u>www.h2youmn.org</u>) also provides information on water quality and may be a useful website/Facebook site for project updates.

The goal for websites will be to include project specific information on each of these websites, updated quarterly with new watershed/water quality tips (see Appendix A) and status of project (e.g., if meetings are taking place, new reports available, etc.).

Social Media. Facebook is the most popular social media platform and was identified by stakeholders as a useful tool to communicate to landowners and stakeholders. The key to social media will be to provide posts that are relevant, timely, and link to available articles, newsletters, webpages, or blogs.

The goal for social media posts will be between 2 and 4 posts per month, spaced at no more than one post per week.

Examples of existing Facebook pages to build from and incorporate into social media activities include but are not limited to:

- <u>H2You</u>—A Facebook site developed by the Central Minnesota Water Education Alliance focused on water quality education in Central Minnesota, 433 people currently following
- <u>Pine River Watershed Alliance</u>—A Facebook site for HUC8 watershed in Upper Mississippi River Basin, maintained by a citizen-led organization, 40 people currently following

- <u>Regional Stormwater Protection</u> Team—A Facebook site focused on stormwater management in the Duluth area, 216 people currently following
- <u>Respect Our Waters</u>—A Facebook site focused on stormwater management at the residential level in the Milwaukee, WI region, 492 people currently following

A new Facebook site will be developed for this project to support existing social media sites. Content will be limited to include only the watershed. The subcommittee will be responsible for providing and/or posting content to the site.

Developing Facebook content can focus on sharing links to other relevant posts (e.g., AgriNews, MPCA, etc.), links to SWCD sites, meeting announcements, and general water quality related content taken from the materials in Appendix A. It is also beneficial to share, comment, and tag partnering organizations and their posts in order to reach larger audiences and support other water quality improvement projects.

Sponsored posts and scheduled post on Facebook are a good way to repeat messaging when time and resources are limited.

Radio Spots. Radio spots (i.e., public service announcements) are an important communication tool, particularly for producers.

The goal for radio spots will be quarterly radio spots that include watershed or water quality related education information along with meeting announcements, when timely.

Each radio spot is estimated to be 30 seconds to 5 minutes in length and includes timely, relevant information on watershed or water quality issues. Each radio spot should include a problem, solution, and a "call to action" that provides a concrete action that listeners are able to do to support the work of the WRAPS. Radio spots may take the form of a public service announcement or interviews with local experts.

"Call to Actions" may include:

- Prompts for listeners to contact their local MPCA or SWCD officials to learn more information and receive help
- Specific meeting dates or community events to attend
- Best management practices and the resources to learn more
- Specifics on federal and state grant and cost share programs

The key radio stations that should be used include:

- Falls Radio (Little Falls)
- WJJY Brainerd
- 1150 am KASM

Current examples include:

- Weekly Stearns County <u>"Dirt Tapes"</u> with 1150 am KASM
- Morrison County SWCD weekly radio addresses

Newspapers. Articles can be placed in local newspapers to create awareness for watershed issues and provide education and outreach related to water quality. For example, the Star Tribune in Minneapolis has often included detailed articles on water quality and watershed issues:

- <u>Mississippi River Faces Mounting Environmental Threats</u>
- How the Upper Mississippi Goes from Pristine to Polluted
- MPCA plans Mississippi River watershed work

Potential local newspapers include:

• St. Cloud Times

- Morrison County Record
- Brainerd Dispatch
- Sartell–St. Stephen Newsleader

The goal for newspapers will be quarterly newspaper articles that include watershed or water quality related education information as provided in Appendix A and notices of public meetings.

Element 6: Efficient Delivery Mechanisms

The materials identified above can be distributed through a variety of mechanisms. One of the most effective means of distributing information and asking stakeholders to get involved is to *piggy-back* messages and involvement onto existing materials and stakeholder involvement activities that the target audience already receives or participates in. This approach helps to leverage resources, and materials are more likely to be seen by the audience because they are already familiar with the format.

Activities during 2017–2018 when civic engagement activities could be included:

- County fairs
- River clean-up events
- Lake association meetings and newsletters
- Sportsmen's and Rod or Gun club events (e.g., St. Joe Rod and Gun Club, Rice Area Sportsmen's Club, St. Stephen Sportsmen Club, and Sauk Rapids Sportsmen's Club)
- Neighborhood association meetings and newsletters
- Library events, 4-H clubs, and other civic meetings
- Agricultural demonstrations (e.g., Benton County Tour of Practices)
- Producer events (e.g., corn and soybean growers, cattleman)
- Irrigator association meetings and newsletters (e.g., Irrigators Association of Minnesota)
- City Council and other local government meetings

The following activities and newsletters are planned for 2018:

- Benton County Water Resources Advisory Committee (WRAC) meetings (January 23, March 27, and May 22, 2018)
- Sartell Watershed Monitoring and Assessment Plan Professional Judgement Group meeting (Spring, 2018)
- 2018 Annual Tree Sales (all SWCDs)
- Others

Element 7: Evaluation Measures

Evaluation provides a feedback mechanism for continuous improvement of the communication plan. Evaluation tools must be built into the program at the beginning to ensure that accurate feedback is generated. The indicators selected must include several parameters that integrate both outputs (number of fact sheets or web page hits) with outcomes (increases in participation, support for the WRAPS). To successfully determine if the objectives were met, a pre- and post- survey is useful. Surveys can be conducted by mail, email, by telephone, or in- person at events. The kind of information a survey should capture includes the following:

- Demographic information on the audience (i.e., ask participant to select which group they identify best with from the list of Key Target Audiences)
- How they heard about a meeting or event
- Interest level in the WRAPS
- Change in awareness or participation based on information received

Feedback on the previous metrics should influence future outreach strategies and modes of communication to more effectively reach and engage the key target audiences and create a working dialogue. The subcommittee should lead this effort in order to ensure consistency across the watershed.

The most important objectives are raising awareness and generating *participation* by key target audiences. The following table provides detailed information on the specific activities to be conducted for the proposed tasks and potential tracking indicators to evaluate the success of the task in addition to any pre- and post- surveying.

Summary of Activities and Tracking Indicators

CE Activities	Tracking Indicators
 Fact Sheet Develop additional fact sheets as needed, using the template provided Print fact sheet Distribute fact sheets Pick one captivating fact from the sheet to spray and repeat everywhere (e.g. on posters, websites, radio spots, articles etc.) 	 How many fact sheets were distributed? How were the fact sheets distributed? Was the information useful to the target audience? Did awareness increase as a result of the fact sheets?
 Poster Presentations Schedule poster presentations throughout the watershed by identifying key workshops and meetings where target audience will be present Ensure presenters have sufficient information to present poster information 	 How many presentations were made and how were those presentations requested? How many requests for follow-up were received because of information presented? How much feedback was received from event attendees? How long, on average, did each passerby spend at the poster? How many comments were received by attendees?
 Websites Update websites with WRAPS project information Update websites with water quality and watershed information 	 How many updates or new posts were made to websites? How many requests for follow-up were received? How many people clicked on the water quality links?
 Social Media Identify types of information to be included on social media (calendar of events, events, key contacts, related links, project information, other partnering Facebook content, etc.). Prepare materials to be posted. Post 3-4 times per month. 	 What percentage of people follow Facebook sites? How many new followers each month? Average user views and interactions (likes, comments, shares, etc.) per post How many RSVPs for each event posted?
Radio Spots ■ Quarterly radio spots	 How many radio spots were played? How many requests for follow-up were received because of information presented?
 Newspaper Articles Quarterly articles for inclusion in local newspapers 	 How many articles were published? How many requests for follow-up were received because of information presented?

Appendix A: Communication Materials (provided electronically)

- 1. Mississippi River–Sartell watershed fact sheet (one-page)
- 2. Mississippi River–Sartell watershed project poster (poster sized)

3. Watershed figures

- Location
- Base map
- Land cover
- Land cover and feedlots

4. Water quality summary and maps

- Lake clarity
- Stream sediment
- Stream phosphorus
- E. coli

5. Existing fact sheets and educational materials

Minnesota Department of Agriculture fact sheets

- Summer Lawn and Landscape Tips
- Watering Your Lawn
- Watersheds, Lawn Care & Water Quality
- Responsible Use of Fertilizers

U.S. Environmental Protection Agency

Septic Smart (for more graphics see: <u>https://www.epa.gov/septic/septic-systems-outreach-toolkit</u>)

University of Minnesota

• Taking Care of Your Septic System

Minnesota Department of Natural Resources fact sheets

- Understanding Our Streams and Rivers
- Healthy Shorelines
- Why Shoreland Vegetation Is Important
- Managing Runoff in Shoreland Areas

Additional educational fact sheets

• Simple strategies to improve Minnesota's waters: fall leaves

Appendix B: Summary of Local Water Management Plans in the Mississippi River–Sartell Watershed

Contents

Bento	n County Overview	3
1.	General	3
2.	Comprehensive Water Management Plan	3
3. C	Other Outreach/Education	3
Crow	Wing County Overview	3
1.	General	3
2.	Comprehensive Water Management Plan (2013–2023)	3
3.	Other Outreach/Education	4
Morri	son County Overview	4
1.	General	4
2.	Local Water Plan	4
3.	Other Outreach/Education	5
Sterns	County Overview	5
1.	General	5
2.		
	Local Water Management Plan (2008–2017)	5
3.	Other Outreach/Education	
		5
	Other Outreach/Education	5 6
Broad	Other Outreach/Education Reaching Civic Engagement/Outreach	5 6 6
Broad 1.	Other Outreach/Education Reaching Civic Engagement/Outreach Central Minnesota Water Education Alliance (CMWA	5 6 6
Broad 1. 2.	Other Outreach/Education Reaching Civic Engagement/Outreach Central Minnesota Water Education Alliance (CMWA Annual Tree Sales	5 6 6 6
Broad 1. 2. 3.	Other Outreach/Education Reaching Civic Engagement/Outreach Central Minnesota Water Education Alliance (CMWA Annual Tree Sales Central MN Ag Weather Network	5 6 6 6
Broad 1. 2. 3. 4.	Other Outreach/Education	5 6 6 6 6 7

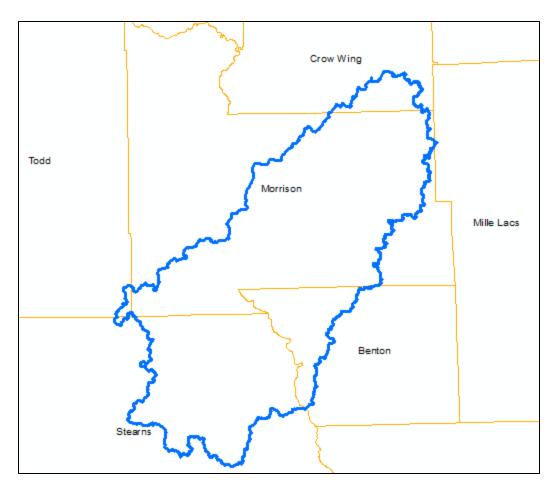


Figure 1. Counties that are in the Mississippi River–Sartell Watershed

Benton County Overview

1. General

Soil and Water Conservation District website: http://www.soilandwater.org/

2. Comprehensive Water Management Plan

County in process of updating plan 2018–2028

Current Plan (2008–2018), amended for 2011–2018 to adjust costs and implementation

- Priority Concerns
 - 1. Feedlot/nutrient management—agricultural land use is dominant
 - 2. Development—anticipated population increase of 23 percent by 2015
 - 3. Groundwater quantity and quality—over pumping and contamination concern (nitrates)
 - 4. Little Rock Lake: Impaired due to excessive nutrients. Has active lake association and is major concern for both old and new plans.
- Water Resource Advisory Committee (WRAC)
 - The WRAC is the entity responsible for plan development
 - Lead by SWCD Water Plan Technician (Amanda Guertin for upcoming, Annie Felix for development of 2008–2018 plan)
 - Mission: to provide coordination between units of government, citizens, and others involved in the protection, management, and improvement of the water resources in Benton County
- Outreach/Education
 - No specific section on outreach and education in CWMP but education and outreach consistently included in activities listed to address priority concerns.
 - Examples include farm demonstrations, distribution of materials for residential, construction contractors, farmers, and municipal officials, newsletters, creation of a county wide "water week" to celebrate water resources, and partnering to create a water resources website.

3. Other Outreach/Education

- Free Nitrate Testing Days for private wells through the Central Sands Private Well Network (CSPWN). In 2017 the event was paired with the annual tree sale of native tress.
- Enewsletter sign up on website.

Crow Wing County Overview

- 1. General
 - Soil and Water Conservation District Website: <u>http://crowwingswcd.org/</u>
 - Facebook: <u>https://www.facebook.com/cwswcd/?hc_ref=SEARCH&fref=nf</u> (link not functioning on SWCD site)
- 2. Comprehensive Water Management Plan (2013–2023)
 - Priority Concerns and objectives
 - 1. Surface water
 - 2. Ground water
 - 3. Aquatic invasive species

- New to this plan
 - Focus on aquatic invasive species for the first time in plan history
 - o Targets specific surface and ground water resources to focus implementation efforts
 - Implementation plan for the Mississippi River
 - Use of a watershed-based, land protection model
 - Analysis and maps of all 125 minor watersheds in the county

3. Other Outreach/Education

- YouTube video series on shoreline stabilization
 - o How to restore your shore with coir logs
 - How to restore your shore with native plants
 - How to stabilize your shore with erosion control fabric
 - How to install a soil wrap slope break
 - How to stabilize your shore with live fascines
- Water Quality Monitoring
 - Citizen monitoring program funded through Surface Water Assessment Grants (SWAG)
 - 36 lakes and 14 river locations since 2007
 - \circ $\;$ Integrated sampler for surface water and Secchi disk for depth. 3 reps.
- Planned activities
 - We Are Water informational gathering on August 8, 2017
 - We Are Water is a touring exhibit and community engagement project. The goals are to build common awareness of local water issues and reconnect people to their relationship with water by using personal narratives, historical materials, and scientific information. The Minnesota Humanities Center, in partnership with state agencies and others, works with local host organizations to build networks of people to share knowledge and co-plan events and activities to take place during a 6-week programming window. Part of the activities include the display of a 1,000 square-foot exhibit brought free of charge.

Morrison County Overview

1. General

Morrison County Soil and Water Conservation District: http://morrisonswcd.org/

2. Local Water Plan

Five year focus plan (2017–2021) Final Draft Stage with last Public Input Hearing April 17, 2017

- Priorities
 - 1. Protect the quality and manage the quantity of groundwater resources
 - 2. Protect the quality and manage the quantity of surface water resources
 - 3. Promote and implement sound land use practices that reduce the impacts on all water resources

R-4

- Achievements 2010–2016
 - Aquatic Invasive Species Planning (AIS)

- Lake Improvement Districts
- Feedlot Program
- Feedlot Registration Update
- Sub-Surface Treatment System Inventory
- Surface Water Assessment Grant Monitoring
- County Comprehensive Land Use Plan
- o Impaired Waters List
- o Army Compatibly Buffer
- Camp Ripley Wellhead Protection Program
- o Ground Water Nutrient Monitoring
- Water Festival

3. Other Outreach/Education

Elected Officials and Partners Conservation County Tour in 2016
 Morrison County Soil and Water Conservation Staff toured the county to host educational and demonstrative talks on various conservation best management practices.

Sterns County Overview

1. General

Stearns County Soil and Water Conservation District: https://co.stearns.mn.us/Environment/WaterResources

Facebook: <u>https://www.facebook.com/Stearns-County-Soil-and-Water-Conservation-District-</u> <u>309249202425135/</u>

2. Local Water Management Plan (2008–2017)

- Priority concerns developed from written and online surveys and two public meetings
 - 1. Source Water Protection
 - 2. Development Impacts
 - 3. Impaired Waters
- MDNR developed a Sensitivity of Ground-Water Systems to Pollution Map for the County
- MHD developed a Nitrate-Nitrogen Probability Map for the county

3. Other Outreach/Education

- Shoreland Homeowner Guides
- Video on Manure Management near sensitive areas. Education on reviewing land applications during inspection. Created by the County Feedlot Officer.
 - Topics covered: Perennial and Intermittent Streams, Lakes and protected wetlands, drainage ditches, open tile intakes, steeply sloping land, road ditches.
- The Dirt Tapes—weekly conservation update from Stearns County Soil and Water Conservation District Staff.

Broad Reaching Civic Engagement/Outreach

- 1. Central Minnesota Water Education Alliance (CMWA)
 - Coalition of Central Minnesota entities and organizations that provides educational outreach to promote water quality stewardship with *residential homeowners*.
 - Encourage residential homeowners in Central Minnesota to protect water resources through education and simple behavior changes.
 - Provides best management practices for your home, yard, car, and pets.
 - Funded by membership dues to meet their storm water I/E requirements.

MS4 Members		
Stearns County	City of St. Cloud	City of Sartell
City of St. Joseph	City of Waite Park	City of Sauk Rapids
St. Joseph Township	Le Sauk Township	St. Cloud University
MN Department of	Benton County	Minden Township
Transportation		
Sauk Rapids Township	Watab Township	Haven Township
St. Cloud Technical and		
Community College		
Source Water Protection Me	mbers	
City of Sauk Centre	City of Melrose	City of Rockville
City of Paynesville	City of Richmond	City of Cold Spring
Upper Mississippi River		
Source Water Protection		
Program		
Advisory Members		
Sauk River Watershed	Stearns County SWCD	Minnesota Rural Water
District		Association

2. Annual Tree Sales

All SWCDs

3. Central MN Ag Weather Network

- Covers areas of **Benton, Morrison, Todd**, Hubbard, Becker, Otter Tail, Douglas, Pope, **Stearns**, Sherburne, **Crow Wing**, and Wadena Counties
- Weather Data, Crop Water Use Information, and growing degree day
- Data collected using network of 12 weather stations

4. Take the Day Off

Minnesota River Renaissance (MRR), **Benton and Stearns SWCD** and County Parks with MDNR. The event offers participants hands-on instruction in a variety of outdoor activities, education on land use impacts to our natural resources, and an increased awareness of the Mississippi River within central Minnesota.

5. Minnesota Smart Salting Program

Video: <u>https://www.youtube.com/watch?v=qc8Y-_Nmfmo</u> Trainings: <u>https://stormwater.pca.state.mn.us/index.php/Smart_Salting_(S2)_training_information</u>

6. Stewardship Week

Promotes the personal and social responsibility to learn about and improve natural resources as we use them wisely. Last week in April, annual.

County	Priority Concern	Goal	Objective	Schedule	Relative Projects/Results
Benton	1. Feedlot/Nutrient Management	Reduce or minimize negative impact of animal manure and fertilizer on surface and groundwater	Increase adoption of feedlot site BMP and manure and fertilizer application BMPs	completed by 2018	 Host field days, meetings, publish written material, etc. Recruit participants through non-traditional methods, i.e., on farm visits Support compliance with MN Rule 7020 Promote low cost feedlot solutions and pasture/grazing management planning Demonstrate economic, environmental, and other benefits of BMP adoption Identify and work with non-compliant farms to install BMPs Provide basic manure management tools and services, i.e. spreader calibration, manure and soil testing, spreading equipment, etc. Promote adoption of manure management BMP's, targeting efforts on dairy and poultry manure and/or land areas of highest concern Conduct demonstration trial plots and other on farm educational work with producers in cooperation with private/public entities
			Increase the adoption of improved manure handling, pasture management, and other BMPs related to water quality with small non- traditional hobby/enterprise farms		 Partner with other entities who provide programs and services to this audience to adopt BMP's Investigate and promote improved manure handling and application systems, i.e.: community composting, small rental equipment
			Resolve feedlot regulation/delegation issue	2010	 Consider need for LGU review of new projects on feedlots under 300 animal units Host exploratory meeting(s) regarding the county feedlot delegation topic, invite other counties/interested parties to speak on the topic
	2. Development	Balance Open space and development to maintain and/or improve the region's water quality	Develop a natural resources inventory that identifies rare/critical /vulnerable resources related to water quality	2010–2018	 Assist in the development of the County Geologic Atlas Identify & compile list of existing inventories of rare/ critical/ vulnerable water resources Survey Local Government Units and public to identify water resource concern areas and priorities Create sensitive areas management plan using the resource concern areas and priorities developed & list compiled Develop tools such as conservation subdivision for use in designated areas Host Alternative Shoreline Ordinance standard discussion between Local Government Units Development of Geologic Atlas Identification/compilation of rare/critical/vulnerable water resource areas Sensitive areas management plan (2018)

Summary Table of Local Water Plan Priorities and Actions

County	Priority Concern	Goal	Objective	Schedule	Relative Projects/Results
Benton		Encourage LGUs to adopt development related	Prepare and provide materials to developers on requirements for water quality and quantity through a unified local government delivery system Review and amend MS4 plans in TMDL watersheds (Little	2012–2018	 Develop a single source of contact for developers to receive information about rules/regulations for all county and township development projects Create a quick reference guide on development regulations Bring together Local Government Units to discuss development issues and the needs associated with those issues. Educate townships about municipal separate storm sewer systems (MS4) plans if they do not have them Develop/utilize and distribute materials about best management practices to new landowners at time of purchase MS4 plans Materials on BMPs to new landowners at time of purchase Reference guide on development regulations Assist MS4s with Total Maximum Daily Load (TMDL)
		ordinances and policies to maintain and enhance water resources	Rock Creek, Little Rock Lake)		implementation
			Utilize plat process/policy to implement urban BMPs		 Create & promote incentives to establish and maintain low impact development Explore updating standards for high rainfall events Identify standard and optional Best Management Practices for development Incentives for LIDs
			Mandate installation of perennial vegetation filters for public ditches	2018	 Include the installation of perennial vegetation filters as part of any ditch cleaning/maintenance project, i.e. grass filters Review public ditch inventory, created electronic map (Hwy department)
		Provide information and education opportunities through a coordinated local government effort.	Develop a unified outreach effort	2018	 Develop a crisis delivery system to address emergency or hot topic issues as they arise Water quality issues into county wide newsletter Establish a county wide educational water resource program that incorporates all audiences and ages Explore water resources website for county
		Plan for future growth in order to protect water resources and minimize land use conflicts	Plan for a full build out around rapidly developing areas	2009–2010	Model impact of full build out on water resources (DOD 2010)
	3. Groundwater	Protect and maintain groundwater quality resources in Benton County	Maintain/promote existing cooperative partnerships that monitor groundwater	2012–2018	 DoA Central Sands Monitoring Network Groundwater quality database (2012)
			Wellhead protection plans (WHPA) for all public/community water supplies	2012–2018	 Establish priority protection area overlays on land use and zoning maps Create a process to identify performance standards for sensitive areas, recharge areas, wellhead protection areas that are impacted by developments
			Continue to regulate SSTS	2010–2018	 Develop plan to ID priority areas (2010) and to inspect and/or upgrade SSTS in priority areas (2012)
			Develop plan to eliminate unused wells	2010–2018	Develop plan

County	Priority Concern	Goal	Objective	Schedule	Relative Projects/Re
Crow Wing (2013– 2023)	1. Aquatic Invasive Species		Lake Association Coordination	Length of plan	 Distribute a rele upcoming even Host open hous
			Water Craft Inspections	Length of plan	Coordinate a way lake association
			Lake Improvement District Management	Length of plan	Maintain LID re
			Education and Outreach	Length of plan	Develop AIS dis for area schools
	2. Surface Water	To empower landowners to steward surface water resources for use and enjoyment by current and future generations	Stormwater management, erosion and sediment control, and shoreline buffers	Length of plan	 Provide technica Expand the avai network of reso Develop public a effective stormy control. Support scientif impact stormwa and vegetated s storm water on site.
			Wetland Protection	Length of plan	 Lead administra Provide educati professionals
			Land use and Development	Length of plan	 Outcome based Measures impe Measure phosp no net increase Common sense Conservation ea Identify sensitiv Promote private
			Measure water quality data and assess trends	Length of plan	 Assess water qu Promote citizer Determine futu
			Ag BMPs	Length of plan	 Nutrient manage Pasture manage Cover crops, co
	3. Groundwater	3. Groundwater To maintain safe, clean drinking water for future generations.	Septic System Maintenance and Inspection	Length of plan	 Inspections eve Identify potentic communities Identify current septage
			Nitrates and other contamination testing	Length of plan	 Regular nitrate Make groundwa

esults
levant news, grant opportunities and info on nts to Lake associations uses or educational events
water craft inspection program with DNR and local ons
eports and contact information online
isplays, presentations, and promotional material Is, County Fair, and other forums.
cal assistance and onsite guidance ailability of educational materials, workshops, and ources
and private drainage solutions that incorporate nwater management and erosion & sediment
tific research and methods that promote minimal water techniques that use natural drainage-ways I soil surfaces to convey, store, filter, and retain nsite while mimicking the natural hydrology of a
rative leadership of WCA tional opportunities to contractors and
ed ordinances
ervious cover phorus inputs from land use activities. Promote
e in phosphorus from developed activities
e mitigation measures (e.g., shoreline buffers)
easements
ive shorelines
te forest management
quality trends and impairments
en water quality monitoring
ure monitoring needs agement plans
gement/rotational grazing plans
onservation drainage, other agricultural BMPs etc.
ery three years
tial centralized treatment options in small
nt and potential sites for land application of
e testing opportunities
water/nitrate data readily available to public

County	Priority Concern	Goal	Objective	Schedule	Relative Projects/Results
Crow Wing (2013– 2023)	Groundwater (cont.)		Wellhead and Drinking water source protection	Length of plan	 Participate on local Wellhead Protection (WP) planning teams. Integrate WP Priorities into water plan implementation strategies. Provide educational opportunities to non-community water sources and well owners about the importance of WP. Promote agricultural BMPs that reduce the potential for groundwater contamination such as irrigation, fertilizer, and herbicide management. Integrate the County Geologic Atlas into WP and water planning efforts
			Sealing of Unused /Abandoned Wells	Length of plan	 Identify unused/abandoned wells Offer incentives to seal unused/abandoned
			Solid & Hazardous Waste Disposal	Length of plan	 Provide information on recycling and solid waste management. Promote proper disposal of household hazardous waste, electronic waste, and petroleum products. Promote product stewardship for properly disposal of various types of solid and hazardous wastes as well as materials management which focuses on the economic value in waste recovery and recycling in addition to environmental protection.
Morrison County	 Quality and quantity of groundwater resources 	quantity of groundwater	Increase the available background information of the County's groundwater resources	Duration of plan	 Twice annual nitrate testing in May and October Development of Geological and Hydrological Atlas Identify sensitive groundwater areas, distribute Geological Atlas workshops Compile usable groundwater monitoring information, distribute
			Develop and implement public information programs aimed at public awareness in the protection of public water supply in the well head protection communities (Little Falls, Camp Ripley, Bowlus, Randall, Rich Prairie (Pierz), Royalton)	Duration of plan	 Annual presentations 5 prescribed grazing plans per year 5 nutrient management plans per year 5 conversion to no-till/strip till plan per year 10 cover crop plan every other year 4 agricultural waste facility improvement everyone year
			Prevent groundwater contamination from both current and abandoned wells.	Duration of plan	 Seal 30 unused wells Distribute abandoned well information to all county residents Survey all DWSMA cities for Class V wells Distribute Class V well information to all high risk landowners
			Work to establish a coordinated spill response plan for the Transportation Corridor through joint training and spill notification	Duration of plan	 Annual meetings to adopt and/or update the emergency spill response plan.
			Support continued solid waste programs and educational efforts on the proper disposal of hazardous waste and recycling programs for the preservation of the Drinking water aquifer. (Little Falls WHPP)	Duration of plan	 Hold 2 waste pesticide collections annually Follow-up and surveys on 2 permitted waste sites annually 3 WP work group meetings held
			Work to establish a coordinated spill response plan for the Transportation Corridor through joint training and spill notification	Duration of plan	Annual meetings to adopt and/or update the emergency spill response plan.

County	Priority Concern	Goal	Objective	Schedule	Relative Projects/Results
Morrison County	Quality and quantity of groundwater resources (cont.)		Continue to regulate subsurface sewage treatment systems (SSTS) and above ground tanks in the county.	Duration of plan	 Create high priority SSTS database. Compliance inspections Low interest SSTS loan information distributed to all landowners in high priority areas. Upgrade ten failing systems for low-income residents Track septic installs, upgrades, and maintenance as part of all land use permits. Conduct or host one septic-related workshop every other year. Online factsheets, ordinances, and other septic information Education program for above ground tanks Clean up 5 old sites reviewed for contaminated soils Inventory above and below ground tanks
			Support Source Water/Wellhead Protection planning and implementation	Duration of plan	 Develop 4 WHP plans, annual PWS/WHP meetings Update 4 WHP plans Identify groundwater thresholds for 5 aquifer areas Restore/preserve 3 recharge area wetlands 150 water samples collected annually from WHPs
			Maintain and promote existing cooperative partnerships that monitor groundwater	Duration of plan	 Monitor all monitoring wells Annual nitrate clinic Annual news releases on groundwater issues 3 meetings held with Little Rock Watershed Partnership
		Preserve and ensure adequate quantity of groundwater	Improve groundwater understanding, awareness, and protection relating to irrigation practices.	Duration of plan	 2 surface/groundwater studies launched Participate in Little Rock Creek Sustainable Groundwater Use Planning Project 3 water conservation initiatives established Water conservation plans for all new irrigators Update 20 existing irrigation plans Complete windbreak removal study Pursue a soil loss ordinance in Morrison County
	2. Quality and quantity of surface water resources	Protect, enhance and maintain the quality of all surface waters	Reduce impacts of agricultural run-off from feedlots and farming practices by completing the MN Buffer law or all protected waters and public ditches.	Duration of plan	 Buffer law implemented within prescribed time limits Landowners affected by the buffer law monitored and appropriate enforcement actions taken. All riparian feedlots in compliance A farm management strategy developed for the Little Rock Watershed and implemented on 5 farms Nutrient management practices implemented on 10 farms
			Study and comprehend the hydrology and storm water management through evaluating watershed changes in surface water elevations in Morrison County	Duration of plan	 Culvert inventory completed and hydrologic model developed. Ordinance drafted and adopted by the County Board
			Ensure that land use decisions for shore land development take environmental impacts into consideration.	Duration of plan	 All developers have approved NPDES permits One storm-water training session held Draft riparian vegetation protection language presented to the County Board A septic system inspection process similar to that completed around Fish Trap Lake developed for Agram Township. Corrective action incorporated.

County	Driarity Concorn	Goal	Objective	Schodulo	Polotivo Drojecto / Poculto
County Morrison County	Priority Concern Quality and quantity of surface water resources (cont.)	ity and quantity of the second s	Objective To provide coordination in the fight against aquatic invasive species by developing proactive solutions aimed at educating and empowering local citizens	Schedule Duration of plan	 Relative Projects/Results AIS risk assessment completed and AIS prevention priorities developed. Utilize MHB social media campaign and Wildlife Forever's "Clean, Drain, and Dry" materials and signs Enlist and enroll volunteers from 5 high priority lake associations in the Extension "AIS Detector Program".
			Protect and enhance the County's wetlands.	Duration of plan	 WCA administered efficiently and effectively. 5 wetland restorations completed. 1 wetland identification training sessions held annually. 20 WCA radio spots aired, 5 general WCA presentations delivered to schools and civic groups. Rules established requiring wetland delineations on new development. Biannual realtor wetland training sessions held over duration of plan
			Assist Lake Associations and Lake Improvement Districts in developing and maintaining good lake protection plans.	Duration of plan	 LID's submit complete annual reports to the County Board. 5 LID annual meetings held. Water quality monitoring program established on all high priority lakes. Aquatic vegetation monitored on10 high priority lakes, 5 enhancement projects completed. 4 wild rice lake enhancement projects completed. Low interest loan program information sent to lakeshore owners on 10 high priority lakes. 4 septic systems upgraded using low interest loan funds. CWF grant application submitted. Continued nutrient monitoring of high priority lakes
			To improve, maintain, and ensure clean and healthy rivers in Morrison County.	Duration of plan	 Little Falls Storm-water Management Plan (2016) Annual participation in Little Rock Lake and Little Rock Creek WRAP projects. 8 native buffer projects completed on critical erosion sites. 5annual River Days held 20 cost shared projects in critical impaired and protected waters areas.
			To increase protection of lakes and rivers from floodwaters by promoting storage of floodwaters on the landscape.	Duration of plan	 Flood funding targeted to critical flood areas. Local input provided to FEMA for review New floodplain maps adopted by the County
			Complete and implement the developing Morrison County Comprehensive Drainage Management Plan and maintain the culvert inventory being conducted.	Duration of plan	 Local partner input received for consideration by the Water Plan Committee Minor watersheds prioritized Priority minor watershed protection projects identified and an implementation list developed Project funding acquired from Federal, State and local grants 10 priority projects completed
Morrison County	3. Land use practices that reduce the impacts on all water resources	To ensure that land use decisions are compatible with natural resource protection	To assure all riparian feedlot producers are in full compliance	Duration of plan	 Cost-share feedlot pollution control practices on 20 feedlots. Technical staff compliment maintained. Continued representation on PC and BOA. Environmental reviews on all feedlot changes Manure stockpile rules enforced

County	Priority Concern	Goal	Objective	Schedule	Relative Projects/Results
					State and federal programs used to promote pasture management, nutrient management, and residue management.
			Reduce the pressure and impact of shore-land, rural residential and marginal land development.	Duration of plan	 Enact over-development standards. PCA requires conditions to address impacts on developments. Continue support of ACUB program. Identify boundaries and assist landowners in the Sentinel Landscape area. State funding secured for conservation easements, 3 easements completed. Land use changes monitored, report developed. Dock and boathouse ordinance provisions enacted.
			Reduce the loss of natural habitat.	Duration of plan	 Soil loss ordinance drafted and presented to County Board. 2 training sessions held on DNR ecological classification system. Actively support ordinance amendments that better protect natural resources, preserve green space in developments, and require storm water management. High priority forestlands in the County identified and mapped. A forest protection and restoration funding proposal drafted in cooperation with MFRC. Information on forest stewardship plans distributed to all private forest landowners in the County. 15 forest stewardship plans completed A grassland protection and restoration strategy drafted and presented to agencies and County Board
Stearns County 2013–2017 amended 2008–2017	 Source Water Protection 	Protect, enhance and improve, as needed, the quality of drinking water supplied by the public water suppliers in Stearns County	Civic engagement directed at issues affecting source water protection: public water suppliers with Source Water Protection Plans, public water suppliers that will have SWPPs	Duration of plan	 Long term maintenance of SSTS, hazardous chemical, stormwater runoff, LID, unsealed wells, agricultural nutrient application, etc. Expand well testing with MDA County wide database of arsenic and nitrate
			Focus inspection and compliance activities within the Drinking Water Supply Management Areas.	Duration of plan	 City of St. Cloud will continue to inspect work done under NPDES Phase II Construction Permits throughout its City limits.
			Administer initiatives that advance source water protection	Duration of plan	 Assist with development of Source water protection plans Nitrate "clinics" with MDA Explore development of additional required protective measures for aggregate mining in wellhead protection areas overlying geologically sensitive aquifers

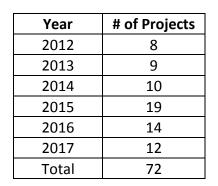
County	Priority Concern	Goal	Objective	Schedule	Relative Projects/Results		
Stearns County 2013–2017 amended 2008–2017	Source water protection (cont.)		Employ land and water treatment initiatives for the protection of source water. Focus will be in DWSMA's.	Duration of plan	 Maintain annual average of sealing 6 unused wells Inventory SSTS located within the vulnerable areas of DWSMA BMOS associated with irrigation on coarse textured soils in DWSMA Support research for the purpose of developing the use of native/alternative plants as a cellulosic source for biofuels Support trading programs that reduce nutrient loading in vulnerable SWP areas. Explore opportunities available through Conservation Marketplace Midwest. Develop an initiative for the installation of a 50' permanently vegetated buffer along public water lakes, wetlands and streams within St. Cloud DWSMA A. Use of programs such as CCRP, CRP, RIM and EQIP will be explored 		
			Conduct mapping and inventory initiatives for the purpose of source water protection.	Duration of plan	• Develop an interactive map outlining the DWSMA's and the vulnerabilities associated with each DWSMA.		
			Assist and support the implementation of approved Source Water Protection Plans.	Duration of plan	 Holdingford Paynesville Cold Spring and Melrose Rockville New Munich 		
	2. Development Impacts	Minimize the impact from existing, new development and redevelopment on surface and ground water resources	Encourage low impact development and better site design on all new and redevelopment projects throughout County.	Duration of plan	 Demonstration projects (rain gardens, green roofs, pervious pavement, etc.) and virtual tour of them Promote low impact development strategies by seeking to include in the zoning ordinance incentives for projects that use low impact development strategies Recognize that some areas are corridors that serve as connections between natural areas and guide development away from those areas of connection. Implement portions of the Alternative Shoreland Standards as developed by the Governor's Initiative Complete county wide natural resource inventory to ID sensitive natural areas 		
			Promote land and water best management practices in shoreland and riparian areas, urban areas	Duration of plan	 Assist riparian landowners with BMPs Disconnect impervious Stormwater/erosion control retrofits Issuance of construction permits in shoreland will include running the Stearns County Pollutant Loading Model Retaining walls as a last solution only if other Promote use of SWCD's Shoreland Preservation Agreement Assist financially with SSTS upgrades Develop a program to allow for small scale projects in developed areas when NRCS Field Office Technical Guide design standards cannot be met. 		

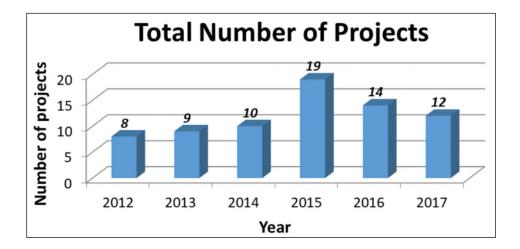
County	Priority Concern	Goal	Objective	Schedule	Relative Projects/Results
Stearns County 2013–2017 amended 2008–2017	Development Impacts (cont.)		Reduce impacts of stormwater runoff and manage flow and volume	Duration of plan	 Provide information, technical and/or financial assistance to County landowners implementing development retrofit-related BMP's Work with contractors Evaluate permanent stormwater practices for installation, maintenance and effectiveness. Revisit erosion control and stormwater provisions of Land use and zoning ordinance after MPCA stormwater manual is updated Continue to participate in CMWEA
			Better coordination of the County's stormwater efforts with the MS4 communities within the County	Duration of plan	 Stormwater Hotline for citizens to report illegal dumping County will provide the opportunity for education of County staff on construction site run-off controls and other activities that may impact stormwater quality, including road salt and sand application and illicit discharge. County staff to be trained to identify instances of illicit discharge while doing field work and will take corrective action.
	3. Impaired Waters	To address the issue of impaired waters and will require the following steps: 1. determine the status of the County's water resources in relation to whether they can meet their designated uses	Assess the ability of the County's lakes, rivers and streams to meet its designated uses.	Duration of plan	 Coordinate and track water monitoring for the entire County Develop and annually review a priority list of lake, river and stream monitoring for each year's monitoring. Promote volunteer monitoring Annual submission to EQUIS
		 improve those rivers, lakes, wetlands and streams that do not meet their designated uses protect those lakes, rivers, wetlands and streams that support their designated uses 	Improve those water resources that are impaired and protect those that are not impaired.	Duration of plan	 Provide information, technical and/or financial assistance to County landowners implementing BMP's on rural property Work with urban and rural landowners on proper land application of nutrients and pesticides Continue to inspect all feedlots, with an emphasis on feedlots in shoreland or with a direct connection to a water resource. Adoption and implementation of comprehensive nutrient management practices. Support and cooperate with Watershed Districts, the MPCA and BWSR on ongoing TMDL projects. Seek ways to engage all citizenry in the County in the value of natural resources Work with and provide information to feedlot owners and operators on natural resource management techniques, including manure storage and application. Promote and market federal/state/local conservation programs to targeted landowners and help prepare them for eligibility in programs such as CSP, CRP, EQIP
					 Establish vegetative buffers on public and private ditches, streams, lakes, wetlands and tile inlets Conservation Marketplace Midwest Promote conservation drainage best management practices Assist landowners with pasture management and alternative water sources for livestock TMDL implementation

Appendix C: Current and Past Water Quality Improvement Projects in the Mississippi River–Sartell Watershed

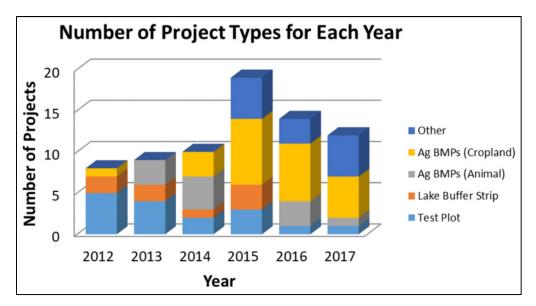
1. Benton County SWCD project overview

• Little Rock Lake projects

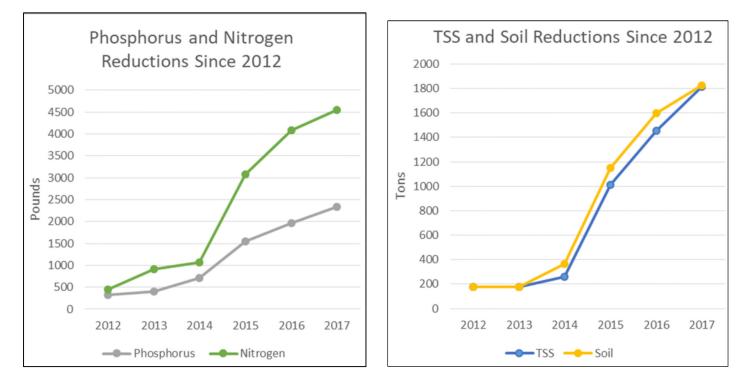

2. Morrison County SWCD project overview

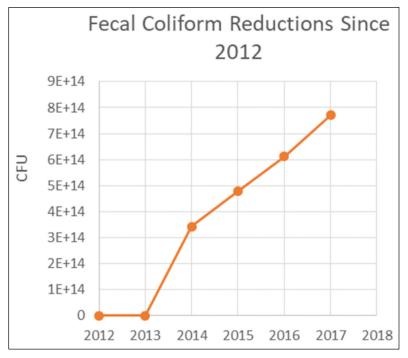

- Swan River
- Platte River
- Current RCPP

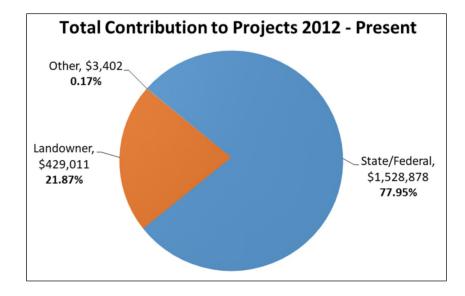
3. Stearns County SWCD project fact sheets

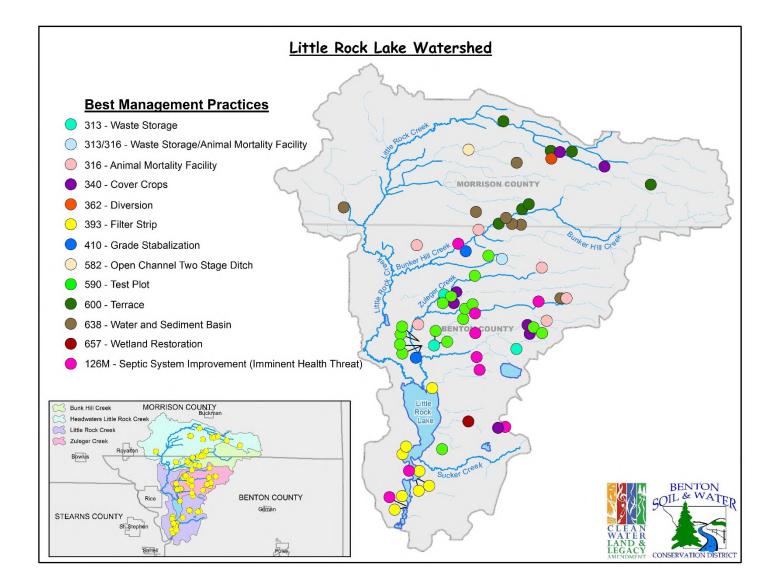

- Annalise Edeburn shoreline project (2013)
- Galen Wilczek agricultural waste project (2016)
- Galen Wilczek erosion project (2016)
- Gemma Lim shoreline project (2014)
- SJU Stump and Sagatagan stormwater treatment (2016)

Little Rock Lake Watershed Projects






Type of Project	2012	2013	2014	2015	2016	2017	Totals
Test Plot	5	4	2	3	1	1	16
Lake Buffer Strip	2	2	1	3	0	0	8
Ag BMPs (Animal)	0	3	4	0	3	1	11
Ag BMPs (Cropland)	1	0	3	8	7	5	24
Other	0	0	0	5	3	5	13
Total	8	9	10	19	14	12	72


Reductions							
Year	TSS	Soil	Phosphorus	Nitrogen	CFU		
2012	175	175	329	455	0		
2013	0.4	3	70	461	0		
2014	84	187	309	146	3.419E+14		
2015	750	786	839	2019	1.3674E+14		
2016	447	447	423	998	1.341E+14		
2017	358	229	370	474	1.57672E+14		

Funds For Projects				
State/Federal	\$1,528,878			
Landowner	\$429,011			
Other	\$3,402			
Total	\$1,961,291			
	. ,			

Morrison County Soil and Water Conservation District Project Overview

Swan River 319 project (completed in 2010). A 319 grant was used by Morrison and Todd SWCD to work with poultry and hog producers for nutrient management to reduce phosphorus loading to the Swan River. The grant totaled \$140,000 in projects which included a \$70,000 match by Morrison and Todd SWCD. Figure 1 provides a summary of projects completed during the project from the Morrison County Water Plan 2010-2020.

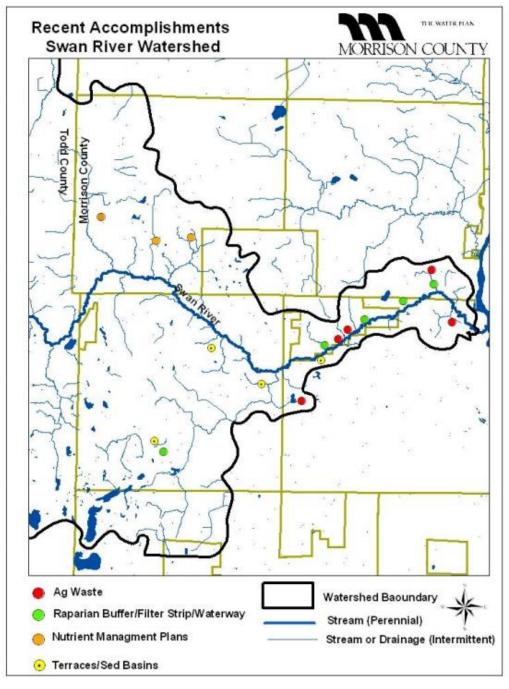


Figure 1. Recently completed projects in the Swan River Watershed (Morrison County, 2010).

Platte River bioengineering and armoring project (2015). The project had several partners including partners from the county, private landowners, and the city. It included a combination of rip-rap, a series of two rock stream barbs, and cedar tree revetments to reduce erosion and provide fish habitat on private property on the Platte River. Funding was provided by the Clean Water Partnership and supplemented with funds from the city, Morrison SWCD cost share, and the private landowner. Preconstruction (Figure 2) and post-construction (Figure 3) photos are provided below.

Figure 2. Pre-construction site photo.

Figure 3. Post-construction site photo.

RCPP award (current). Morrison SWCD has a current \$2.8 million dollar RCPP grant. The funds will be used primarily for Platte River watershed restoration and brings in addition CSP and EQIP funding for the area. The award also supports a Healthy Forest easement project.

Annalise Edeburn

Shoreline Restoration

Project Description: This property on Mississippi River had a failing retaining wall and deck system and extensive erosion occurring on the bank. The shoreline was stabilized with riprap. The retaining walls and deck were removed and erosion control blanket installed along the entire shoreline on the property to protect the sloped until the planted native vegetation can become established. The landowner did install an integrated stone stairway which was installed to the dock (this was at their own expense).

Pollution Reduction Estimates:

Phosphorus

47.60 Lbs/Yr

Sediment (TSS)

55.97 Tons/Yr

Stearns County Soil and Water Conservation District 110 2nd Street South, Waite Park, MN 56387

Ph: 320-251-7800 x3 www.stearnscountyswcd.net

Practice: Shoreline Restoration

Target Waters: Mississippi River

Year Constructed: 2013

Components:

- Native Grass Planting
- Wildflower Planting
- Shrub Planting
- Sediment Logs
- Erosion Control Blanket
- Weed Free Straw Mulch

Benefits:

- Sediment Reduction
- Nutrient Reduction
- Natural Aesthetics
- Wildlife Habitat

Partners:

- Landowner
- Stearns County SWCD
- West Central TSA
- Board of Water & Soil Resources

Watershed:

Mississippi River – Platte-Spunk

Annalise Edeburn

Shoreline Restoration

Failing Retaining Wall System

Shoreline Stabilization

After Shoreline Restoration

"Annalise was concerned about the stability of the shoreline, they felt naturalization would do the best job at protecting the bank as well as the Mississippi River."

– Greg Berg, SWCD Lakeshed Specialist

Before Shoreline Restoration – Erosion Issues

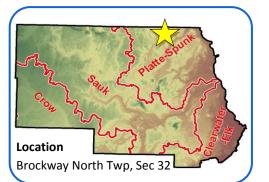
Erosion Blanket & Plant Installation

Funding:	
State Funds*	\$ 12,375
Landowner Investment	\$ 4,125

* Administered by Stearns SWCD State Cost Share	

Animal Manure Storage System

Project Description: This project consisted of a concrete stacking slab and earthen diversions. Diversion are berms that direct clean water away from feedlots and the manure on them so it does not become contaminated. The landowner stores manure from their feedlots on the stacking slab. It is designed and constructed to hold and store the manure and any runoff or polluted water. The landowner can then apply the manure to their fields at the proper rates and during times of the year that the manure will be most beneficial as a nutrient source. This also allows for application/incorporation at times of the year that reduce the chances of it being washed off the fields and becoming a pollution concern.


Pollution Reduction Estimates:

Phosphorus	10	Lbs/Yr
COD	533	Lbs/Yr
BOD5	114	Lbs/Yr
Nitrogen	30	Lbs/Yr

* COD - Chemical Oxygen Demand

* BOD 5 – Biological Oxygen Demand

Stearns County Soil and Water Conservation District 110 2nd Street South, Waite Park, MN 56387

Ph: 320-251-7800 x3 www.stearnscountyswcd.net

Practice: Animal Manure Storage System

Target Waters: Spunk Creek

Year Constructed: 2016

Components:

- Water Diversion
- Concrete Stacking slab

Benefits:

- Pollution Reduction
- Improve Water Quality
- Environmentally Sound

and Efficient Application of Manure

- Sustain the Agriculture Industry

Partners:

- Landowner
- Stearns County SWCD
- MN Dept of Ag
- USDA/NRCS
- West Central TSA
- Stearns County ESD

Watershed:

Platte-Spunk

Animal Manure Storage System

Diversion Routes Clean Water Around Feedlot

Concrete Stacking Slab Construction

Completed Manure Stacking Slab

"The stacking slab and related components of this project will result in greatly improvement manure management for the landowner. This will results in a more efficient operation for Galen while reducing pollution from his feedlot."

- Kevin Carlson, Stearns SWCD Engineering Technician

Forming of Concrete Stacking Slab Walls

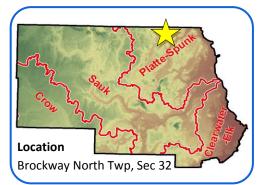
Completed Manure Stacking Slab

Funding:

State Funds*	\$	3,120
Landowner Investment	\$	12,904
Federal Funds also utilize	ed	

* Administered by Stearns SWCD MN Ag Water Quality Certification Program

Erosion Control


Project Description: This project consisted a number of erosion control practices including a grassed waterway, Earthen Diversion, Water and Sediment Control Basins and Terracing. All these practices work together to slow the water down to stop the erosion that was occurring in this landowner's field. The landowner will maintain and manage these practices assuring not only that nutrients and sediment are kept out of our waters but they are able to maintain the productivity of their fields.

Pollution Reduction Estimates:

Phosphorus

Sediment (TSS)

766 Lbs/Yr 901 Tons/Yr

Stearns County Soil and Water Conservation District 110 2nd Street South, Waite Park, MN 56387

Ph: 320-251-7800 x3 www.stearnscountyswcd.net Practice: Erosion Control

Target Waters: Spunk Creek

Year Constructed: 2016

Components:

- Water and Sediment Control Basins

- Clean Water Pipe
- Earthen Diversion
- Grassed Waterway
- Terrace

Benefits:

- Pollution Reduction
- Improve Water Quality

- Maintain Cropland

Topsoil


Partners:

- Landowner
- Stearns County SWCD
- MN Dept of Ag
- USDA/NRCS
- West Central TSA

Watershed:

Platte-Spunk

Field Erosion Before Construction

Grassed Waterway Shaped, Seeded and Erosion Blanket

Establish Basin and Grassed Waterway

"Galen was dealing with some pretty serious field erosion prior to this project. This was bad for his farming operation and was leading to some pollution concerns. The practices he installed ended up solving both those issues."

– Lee Zabinski, NRCS Technician

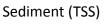
- NRCS/SWCD Construction Staking

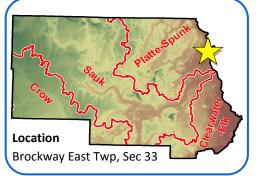
Water and Sediment Basin with Control Inlet

Funding:

State Funds*	Ş	15,025
Landowner Investment	\$	7,611
Federal Funds also utilize	ed	

* Administered by Stearns SWCD MN Ag Water Quality Certification Program


Gemma Lim Shoreline Restoration


Project Description: This property on Mississippi River was very low land and was experience erosion occurring on the bank. Existing riprap was left in place. Much of the area was mowed very close to the river. The lawn grass was terminated. The project area was planted with native vegetation and erosion control blanket was installed to protect the planting until the planted native vegetation can become established. Out of almost 800 feet of Mississippi River Shoreline only 25 was left to lawn for the landowner to access their dock, the rest was naturalized!

Pollution Reduction Estimates:

Phosphorus

0.53 Lbs/Yr 0.50 Tons/Yr

Stearns County Soil and Water Conservation District 110 2nd Street South, Waite Park, MN 56387

Ph: 320-251-7800 x3 www.stearnscountyswcd.net **Practice:** Shoreline Restoration

Target Waters: Mississippi River

Year Constructed: 2014

Components:

- Native Grass Planting
- Wildflower Planting
- Shrub Planting
- Erosion Control Blanket

Benefits:

- Sediment Reduction
- Nutrient Reduction
- Natural Aesthetics
- Wildlife Habitat

Partners:

- Landowner
- Stearns County SWCD
- West Central TSA
- MN DNR
- Stearns County ESD

Watershed:

Platte-Spunk (Mississippi River)

Gemma Lim

Failing Retaining Wall System

Planting Preparation

After Shoreline Restoration (same view as above!)

"Gemma felt this project would have many benefits. It would help protect their property while providing a great wildlife and esthetic value."

– Greg Berg, SWCD Lakeshed Specialist

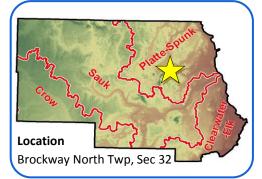
Before Shoreline Restoration – Erosion Issues

Erosion Blanket & Planting

<u>Funding</u> :		
State Funds*	\$	10,783
Landowner Investment	\$	3,594
* Administered by Stearns SWCD		
DNR Aquatic Habitat Restoration G	rant	

St Johns University Stump and Sagatagan

Storm Water Treatment


Project Description: As part of an infrastructure updates the College of St. Johns University wanted to incorporate some practices that would provide additional treatment of storm water runoff on campus coming from buildings, parking areas and other developed areas prior to the water entering Stump Lake and Lake Sagatagan. The Stearns County SWCD applied for a Clean Water Fund grant to help get this project completed. Storm water was directed into vegetated Infiltration basins to allow for treatment and infiltration of the storm water coming off the campus. This greatly reduces the amount of pollution entering these local lakes.

Pollution Reduction Estimates:

Phosphorus

Sediment (TSS)

3.77 Lbs/Yr 1,225 Tons/Yr

Stearns County Soil and Water Conservation District 110 2nd Street South, Waite Park, MN 56387

Ph: 320-251-7800 x3 www.stearnscountyswcd.net **Practice:** Storm Water Treatment

Target Waters: Stump Lake & Lake Sagatagan

Year Constructed: 2016

Components:

- Infiltration Basins
- Clean Water Pipes
- Earthen Diversions

Benefits:

- Pollution Reduction
- Improve Water Quality

Partners:

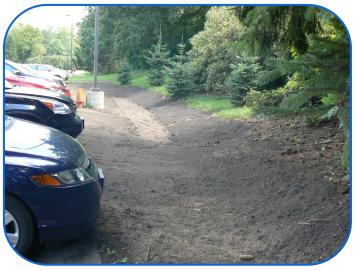
- St. John's University
- Anderson-Johnson
- Associates, Inc.
- Board of Water and Soil Resources
- Stearns County SWCD
- West Central Technical Service Area

Watershed:

Platte-Spunk

Erosion Control

Existing Highly Impervious Landscape


Volleyball Court Amended to a Infiltration Basin

Volleyball Court Infiltrates Stormwater (See Above)

"It was great working with St John's University. They were being proactive in addressing water quality concerns and were willing to work with some pretty creative solutions to ensure Stump Lake and Lake Sagatagan can maintain a great level of water quality for years to come."

- Greg Berg, SWCD Watershed Specialist

Infiltration Trench Along a Parking Lot

Water Diversions/Infiltration Basins

Funding:			
State Funds*	\$	167,475	
SJU	\$	139,055	
Federal Funds also u	utilized		
* Administered by Stearns SV MN Clean Water Fund	NCD		

Appendix C. Public Input and Information from the Mississippi River Sartell Public Meetings

Figure 49. Station #1: Where in the watershed? Northeastern portion of the watershed. Attendees were asked to place a star on the map marking their home. Note, yellow arrows were added later to better show location of stars.

Figure 50. Station #1: Where in the watershed? Southwestern portion of the watershed. Attendees were asked to place a star on the map marking their home. Note, yellow arrows were added later to better show location of stars.

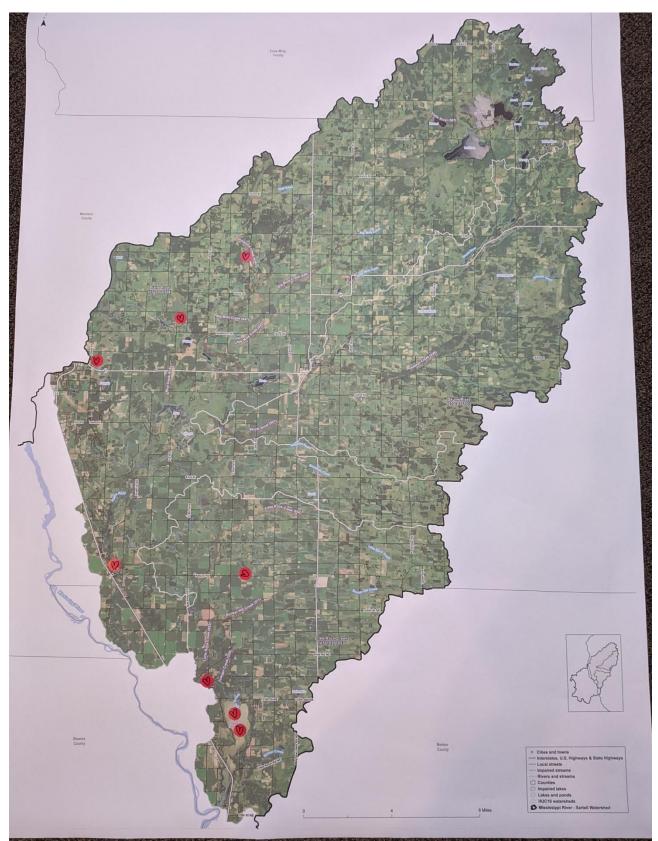


Figure 51. Results from Station #2: Love your watershed—northwestern portion of the watershed. Attendees were asked to mark a heart sticker on natural areas within the watershed that they care about.

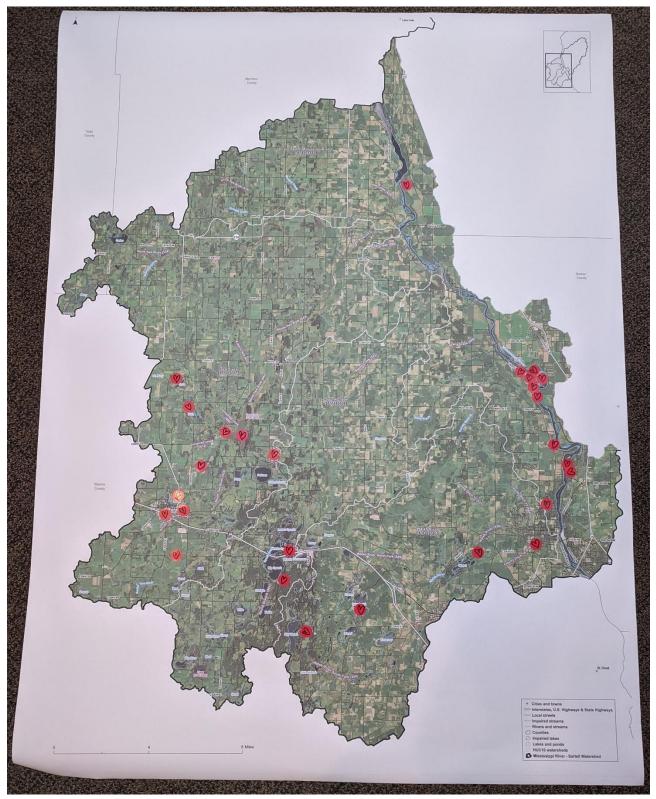


Figure 52. Results from Station #2: Love your watershed—southwestern portion of the watershed. Attendees were asked to mark a heart sticker on natural areas within the watershed that they care about.

Tell us about the location(s) you chose! Why do these spots have your ♥?

Family farm = Nitrates in well Pikecreek Watershel Feeling into Charles A Lindbergh StatePark It's my happy place + Such fascinating Surface ground water Relationsh property on Two Rivers Lake - in family Sand bar on the Mississippi that is a fun hang out spot for families to get together Mississippi River Park Love to hike and ski at Missasippi River Park Mississippi River Park - Greef Park We boat on the mississipp' liver & love it we also have a family cabin on Pleasand Lake. Watab River is near our horne, we love to walk in the park & see if

Figure 53. Written results from Station #2: Love your watershed sheet 1. Attendees were given the option to write down why the location they chose was important to them.

Tell us about the location(s) you chose! Why do these spots have your ♥?

Live on Big Spunk. Trying to address high algae bloom in post summers. Fish the Mississippi. Love Blanchard Dam. Practices to protect the water quality! Need more practices in the Two Rivers watershed clean + store water to clean up Two Rivers Lake. ち one is our home, we love to swim, fish and Kayak on the river. Mississippi County Park - Hiking + Skiing

Figure 54. Written results from Station #2: Love your watershed sheet 2. Attendees were given the option to write down why the location they chose was important to them.

Table 22. Issue and Concerns Survey results from February 2020 Public meeting and local partner teammembers. Surveyed were asked to select their top three issues and/or concerns in the Mississippi River–SartellWatershed.

Issue or concern	Public Meeting votes	Local Partner Team votes	
Row crop agriculture	8	16	
Feedlots	9	10	
Irrigation and groundwater levels	7	3	
Lake management	6	0	
Urban stormwater runoff	6	2	
Septic systems/wastewater	6	1	
Climate change	4	3	
Source water protection	4	6	
Streambank erosion and channelization	3	3	
Altered hydrology	3	6	
Pastured areas	2	5	
	"Stormwater"		
	"Habitat loss for birds and animals" "Nitrates"		
Other (write in option)	"Please monitor the pollution being fed into the Mississippi at the Harris channel"	"Urban development"	
	"Dam removal on Little Rock Creek at Sartell WMA"		
	"Invasive species"		