

Mercury Deposition in the Great Lakes Region

Angela Dickens LADCO Data Scientist

MPCA 2023 Statewide Mercury TMDL Meeting September 21, 2023

LADCO Report on Mercury

- Technical report: Mercury Deposition in the Great Lakes
 - Released June 2023
 - https://www.ladco.org/wp-content/uploads/Projects/Mercury/Mercurydeposition-in-the-Great-Lakes-Report-2023 FINAL-CLEAN.pdf
- Examines amounts and trends in wet and dry (litterfall) deposition of mercury in the Great Lakes states
 - MN, WI, MI, IL, IN, OH
 - Also looks at emissions trends and trends in atmospheric concentrations (where available)
 - Based on data from the National Atmospheric Deposition Program (NADP)
 - Interprets data using published research studies

Outline

- The mercury cycle and monitoring networks
- Mercury emissions trends
- Atmospheric mercury concentrations
- Mercury deposition trends
 - Wet deposition
 - Dry deposition (litterfall)
- Insights into sources of mercury in the region

The Mercury Cycle

Local, regional, continental, global

Gaseous elemental mercury (GEM) Gaseous oxidized mercury (GOM) Particle-bound mercury (PBM)

GEM \leftrightarrow GOM GOM dissolves in water GOM \leftrightarrow PBM

Wet deposition

Mostly GOM & PBM

Dry deposition

- Mostly GEM
- 75% via litterfall

National Atmospheric Deposition Network (NADP) Sites

Mercury Deposition Network

- Measures wet deposition
- Most extensive network
- Longest record

Mercury Litterfall Network

- Measures dry deposition
- Intermediate coverage

Atmospheric Mercury Network

- Measures gaseous or particulate forms
- Very sparse network

Mercury Emissions

Decreased by 87% from U.S. sources

- Reductions from a variety of sources, particularly:
 - Chlor-alkali plants
 - Coal combustion

Global emissions trends are less certain

- Likely increased at least through 2013
- No consensus on direction or magnitude

Mercury Emissions

Inventory year

2000 -

Reductions of 19% (OH) to 72% (MI) since 2008

Largest reductions from Electricity Generation

Minnesota: 55% reductions

Most reductions from Electricity Generation

Data: National Emissions Inventory (NEI)

LADCC

Mercury Emissions from MN Sources

Mercury Emissions from Point Sources

Almost all large* sources in the region are in the metals industry:

- Steel plants
- Other metal processing facilities (Mn & Al)
- Taconite facilities
- (One coking plant)

Electricity generating units have lower emissions as a result of regulations and shutdowns

*Large sources emitted >100 lb Hg in 2021

Data: EPA's Toxics Release Inventory except for MN (MN's point source air emissions inventory)

Atmospheric Concentrations of Mercury

- GEM, GOM, and PBM
- Very sparse data in space and time
- Many years have incomplete data → Less representative

Atmospheric Concentrations of Mercury

- GEM is >100 x as abundant as GOM or PBM (nanograms vs picograms)
- Focus on sites with more complete data
- GEM similar at all sites with no obvious trends
- GOM lower in Wisconsin (WI07) than in Ohio (OH02)
 - GOM seems to be decreasing at both sites
- PBM: no clear spatial or temporal trends

Atmospheric Concentrations of Mercury

Published GEM Trends

Zhang et al. (2016)

In contrast:

- North American GEM decreased 1.2 to 2.1% per year from 1990 to 2013 (Zhang et al., 2016)
 - May not see this in the Great Lakes region because decreases have slowed or because of the sparsity of sampling sites
- Atmospheric mercury concentrations have been increasing in East Asia (Obrist et al., 2018)

Wet Deposition of Mercury

Wet deposition is greater in the southern part of the region

- Likely due to greater precipitation in southern areas (Risch and Kenski, 2018)
- Also: larger point sources of mercury in the southern states

Variation within the region suggests a role for local and regional emissions sources, as well as global emissions

Wet Deposition of Mercury

<u>Southern states</u> (IN as example):

- Wet deposition has been decreasing for at least the last 15 years
 - Largest reductions in the Ohio River Valley (IN21)
 - Steady reductions in mercury concentrations and unclear trends in precipitation
 - Mercury concentration reductions appear to be driving deposition decreases
 - Likely due to decreased local and regional emissions

Wet Deposition of Mercury

Northern states (MN as example):

- Wet deposition is flat to increasing
 - Increasing most consistently in MN
 - Mercury rainwater concentrations have mostly decreased but not as clearly as in the south
 - Precipitation has increased
 - Increased deposition likely primarily due to increased precipitation
 - Contrasted with earlier decreases at these sites

Dry (Litterfall) Deposition of Mercury

Dry deposition is greater in the southern part of the region

• Similar patterns to wet deposition

Dry (Litterfall) Deposition of Mercury

Shorter and less complete records than for wet deposition

<u>Southern states</u> (IN as example):

- Clear decreases in litterfall deposition
 - Mercury concentrations decreased
 - Litterfall mass also decreased at some sites
 - Likely driven by decreased local/regional emissions

Dry (Litterfall) Deposition of Mercury

Northern states (MN as example):

- Litterfall deposition is flat relatively steady over the last 15 years
- Litterfall mass and mercury concentrations are also steady

Comparison of Wet & Litterfall Deposition

Generally similar contributions from both litterfall and wet deposition

- Both types of deposition are important
- Litterfall seems more important at southern sites
- Wet deposition is more important at some northern sites (MN16 & WI31) but not at others

No clear trends over time

Sources of Mercury in the Region

- Based on this analysis and literature studies
- Contributions from local and regional sources are important
 - In addition to continental and global sources
 - Evidence: decreases in Hg concentrations and deposition while global emissions are steady or increasing
 - Southern Great Lakes region:
 - Reductions occurred when major local/regional emissions sources (e.g. EGUs) were installing controls or shutting down
 - Heavy influence from local emissions
 - Northern Great Lakes region:
 - Mixed influence from local, regional, and global sources
 - Previous decreases linked to local emissions reductions (Engstrom et al., 2007)
 - Also influenced by increased precipitation → increased wet deposition

Conclusions

- Both litterfall and wet deposition of mercury are highest in southern areas
 - Near the most/largest sources
- Wet deposition is strongly decreasing in the south but weakly increasing in the north
 - Led to decreases in regional differences over time
- Litterfall deposition is decreasing in the south but trends are unclear in the north

Thank you! Questions? dickens@ladco.org

References

- Obrist, D. J.L. Kirk, L. Zhang, E.M. Sunderland, M. Jiskra, N.E. Selin (2018) A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use. *Ambio*. https://doi.org/10.1007/s13280-017-1004-9.
- Brigham, M.E., D.D. VanderMeulen, C.A. Eagles-Smith, D.P. Krabbenhoft, R.P. Maki and J.F. DeWild (2021) Long-term trends in regional wet mercury deposition and lacustrine mercury concentrations in four lakes in Voyageurs National Park. *Appl. Sci.* 11, 1879. https://doi.org/10.3390/app11041879.
- Risch, M.R. and D.M. Kenski (2018) Spatial Patterns and Temporal Changes in Atmospheric-Mercury Deposition for the Midwestern USA, 2001–2016. *Atmosphere* 9: 29. https://doi.org/10.3390/atmos9010029.
- Zhang, Y., D.J. Jacob, H.M. Horowitz, L. Chen, H.M. Amos, D.P. Krabbenhoft, F. Slemr, V.L. St. Louis, and E.M. Sunderland (2016b) Observed decrease in atmospheric mercury explained by global decline in anthropogenic emissions. *Proc. Nat. Acad. Sci.* 113(3): 526-531. https://doi.org/10.1073/pnas.1516312113.

