Macroinvertebrate Data Collection Protocols for Lotic Waters in Minnesota

Sample Collection, Sample Processing, and Calculation of Indices of Biotic Integrity for Qualitative Multihabitat Samples

March 2017

Contents

Definitions Requirements. Responsibilities Quality Assurance and Quality Control. Training Macroinvertebrate sampling procedures Macroinvertebrate sample processing and Quality Assurance/Quality Control procedures Macroinvertebrate sample processing and Quality Assurance/Quality Control procedures Macroinvertebrate sample processing and Quality Assurance/Quality Control procedures If Sample cleaning and preparation for subsampling Quality assurance for sorting and subsampling. Quality assurance for sorting and subsampling. Macroinvertebrate Identification and Enumeration Quality Assurance/Quality Control procedure for macroinvertebrate identification 22 Calculation of Minnesota Macroinvertebrate IBIs Summary of MIBI development Determining Stream Type Data collection and organization Calculating metric and IBIs scores Metric types Calculating Metric Scores Calculating Metric Scores Calculating IBI scores References Appendix A: Field visit form and field data labels for collecting macroinvertebrates from Minnesota streams Appendix B: Examples of macroinvertebrate sorting and identification bench sheets 3. Macroinvertebrate Sorting QC Form 3. Macroinvertebrate Identification Lab Bench Sheet 3. Appendix C: Dichotomous key for determining macroinvertebrate stream type membership 3. Appendix C: Dichotomous key for determining macroinvertebrate stream type membership 3.	Contents	2
Macroinvertebrate community sampling protocol for stream monitoring sites Definitions Requirements Responsibilities Quality Assurance and Quality Control Training Macroinvertebrate sampling procedures Macroinvertebrate Identification for subsampling 13 Quality Assurance for sorting and subsampling 14 Macroinvertebrate Identification and Enumeration 15 Quality Assurance/Quality Control procedure for macroinvertebrate identification 26 Calculation of Minnesota Macroinvertebrate IBIs 27 Summary of MIBI development 28 Determining Stream Type 29 Data collection and organization 20 Calculating metric and IBIs scores 21 Metric types 22 Calculating Metric Scores 23 Metric types 24 Appendix A: Field visit form and field data labels for collecting macroinvertebrates from Minnesota streams 28 Appendix A: Field visit form and field data labels for collecting macroinvertebrates from Minnesota streams 33 Macroinvertebrate Sorting QC Form 34 Macroinvertebrate Identification Lab Bench Sheet 35 Macroinvertebrate Identification Lab Bench Sheet 36 Appendix C: Dichotomous key for determining macroinvertebrate stream type membership 37 Appendix D: Taxonomic trait information 38 Appendix D: Taxonomic trait information 38	Introduction	
Responsibilities	Macroinvertebrate community sampling protocol for stream monitoring sites	
Responsibilities	Definitions	
Quality Assurance and Quality Control	Requirements	
Training	Responsibilities	
Macroinvertebrate sampling procedures	Quality Assurance and Quality Control	
Macroinvertebrate sample processing and Quality Assurance/Quality Control procedures	Training	
Sample cleaning and preparation for subsampling	Macroinvertebrate sampling procedures	6
Sorting and subsampling	Macroinvertebrate sample processing and Quality Assurance/Quality Control procedures	10
Quality assurance for sorting and subsampling	Sample cleaning and preparation for subsampling	10
Macroinvertebrate Identification and Enumeration	Sorting and subsampling	13
Quality Assurance/Quality Control procedure for macroinvertebrate identification	Quality assurance for sorting and subsampling	18
Summary of MIBI development	Macroinvertebrate Identification and Enumeration	19
Summary of MIBI development	Quality Assurance/Quality Control procedure for macroinvertebrate identification	21
Determining Stream Type	Calculation of Minnesota Macroinvertebrate IBIs	21
Data collection and organization	Summary of MIBI development	21
Calculating metric and IBIs scores	Determining Stream Type	22
Metric types	Data collection and organization	24
Calculating Metric Scores	Calculating metric and IBIs scores	25
Calculating IBI scores	Metric types	25
References	Calculating Metric Scores	26
Appendix A: Field visit form and field data labels for collecting macroinvertebrates from Minnesota streams	Calculating IBI scores	26
Appendix B: Examples of macroinvertebrate sorting and identification bench sheets	References	26
Appendix B: Examples of macroinvertebrate sorting and identification bench sheets	· · · · · · · · · · · · · · · · · · ·	
Macroinvertebrate Sample Sorting Bench Sheet		
Macroinvertebrate Sorting QC Form		
Macroinvertebrate Identification Lab Bench Sheet		
Macroinvertebrate Identification QC Form	-	
Appendix C: Dichotomous key for determining macroinvertebrate stream type membership37		

Appendix E: Taxonomic targets	64
Appendix F: Macroinvertebrate IBI metric information	65
Table E1 – Metric information for Large River MIBI, stream types 1 and 2	65
Table E2 – Metric Information for High Gradient Stream MIBI, stream types 3 and 5	66
Table E3 – Metric information for Low Gradient Stream MIBI, stream types 4, 6, and 7	67
Table E4 – Metric Information for Northern Coldwater Stream MIBI, stream type 8	68
Table E5 – Metric Information for Southern Coldwater Stream MIBI, stream type 9	69

Introduction

This document describes the protocols for sampling macroinvertebrates from lotic waters (e.g., streams, rivers, and ditches), processing samples, and calculating index of biotic integrity (IBI) scores. These methods must be followed for the data to be used as part of 1) assessment of aquatic life (Class 2) beneficial uses as part of the intensive watershed monitoring program, 2) data supplementation to aid the stressor identification process, 3) development of regional biological criteria, and 4) calibration of biological criteria. The use of biological data for determining attainment or nonattainment of beneficial uses, including the use of IBIs, is described in Minn. R. 7050.0150, subp. 6. A description of how biological information is used for assessment of beneficial uses is described in the 2016 Guidance Manual for Assessing the Quality of Minnesota Surface Waters for Determination of Impairment 305(b) Report and 303(d) List (MPCA 2016). Before using these standard operating procedures (SOPs), field crews, sample processors and others involved in the collection of macroinvertebrate data should familiarize themselves with these protocols.

Macroinvertebrate community sampling protocol for stream monitoring sites

This section describes the methods used by the Minnesota Pollution Control Agency's (MPCA) Biological Monitoring Program to collect macroinvertebrate community information at stream monitoring sites for the purpose of assessing water quality and developing biological criteria. This procedure applies to all wadeable and non-wadeable monitoring sites in which stream macroinvertebrates are to be collected for the development of biological criteria or the assessment of water quality.

Definitions

Integrated monitoring: A stream monitoring technique to assess water quality using chemical, biological and physical indicators.

Biological Criteria: Narrative expressions or numerical values that describe the reference biological integrity of a specified habitat. Biological criteria are the benchmarks for judging the condition of aquatic communities.

Qualitative Multi-habitat Sample (QMH): A method of sampling macroinvertebrates which involves sampling a variety of macroinvertebrate habitats, including the following: rocky substrates, including riffles and runs, submerged and emergent aquatic vegetation, undercut banks, overhanging vegetation, woody debris, and leaf packs.

Intensive Watershed Monitoring: A watershed monitoring plan designed to assess the aquatic health of major watersheds through intensive biological and water chemistry sampling. This intensive approach allows assessment of watersheds for aquatic life, aquatic recreation, and aquatic consumption use support of the state's streams in each of the state's 80 major watersheds on a rotating 10-year cycle.

Requirements

<u>Qualifications of crew leaders</u>: The crew leader must be a professional aquatic biologist with a minimum of a Bachelor of Science degree in biology with an aquatic entomology, invertebrate zoology, fisheries, or closely related specialization, or equivalent experience in a related field. Additionally, they should

have previous professional experience working as a field biologist, including sampling macroinvertebrates, and conducting habitat assessments. Field crew leaders must possess excellent map reading skills, have a demonstrated proficiency in the use of a GPS (Global Positioning System), and have good interpersonal skills for communicating with landowners and other interested stakeholders.

<u>Qualifications of field technicians/interns</u>: A field technician/intern must have at least one year of college education and had coursework in environmental and/or biological science.

<u>General qualifications</u>: All personnel conducting this procedure must have the ability to perform rigorous physical activity. It is often necessary to wade through streams and/or wetlands, canoe, or hike for long distances to reach a sampling site.

Responsibilities

<u>Field crew leader</u>: Ensures that data generated using this procedure meet the standards and objectives of the integrated stream monitoring program and carries out the procedures outlined in this section.

<u>Technicians/interns</u>: Carries out the procedures outlined in this section, including maintenance and stocking of equipment, data collection and recording.

Quality Assurance and Quality Control

Compliance with this procedure will be maintained through annual internal reviews. Technical personnel will conduct periodic self-checks by comparing their results with other trained personnel. Calibration and maintenance of equipment will be conducted according to the guidelines specified in the manufacturer manuals.

In addition to adhering to the specific requirements of this sampling protocol and any supplementary site specific procedures, the Quality Assurance (QA) and Quality Control (QC) requirements for this protocol are as follows:

- 1. Control of Deviations: Deviations from the procedure shall be sufficiently documented to allow repetition of the activity as actually performed.
- 2. QC Samples: 5-10 percent of all sites sampled in any given year are resampled as a means of determining sampling variability.
- 3. Verification: The field crew leader will conduct periodic reviews of field personnel to ensure that technical personnel are following the procedures according to this SOP.

Training

All personnel, including experienced staff, will receive annual instruction from a trainer designated by the program manager. Major revisions in this protocol require that all personnel be re-trained in the revised protocol by experienced personnel. Training activities will include instruction in the field, as well as a field test to ensure that personnel can implement this procedure. The field crew leader will provide instruction in the field to untrained personnel, such as interns and technicians, to ensure they can effectively execute this procedure.

Macroinvertebrate sampling procedures

A. Equipment list

Verify that all necessary items are present before commencement of this procedure (Table 1).

Table 1. Equipment List – This table identifies all equipment needed in the field in order to implement the sampling protocol as described.

٧	Item and purpose
-	Two D-frame dipnets with 500 micron mesh nets, equivalent to Wildco, turtox design – for collection of
	inverts
	Two sieve buckets with 500 micron sieves – for reducing debris in sample
	Stream Invertebrate Visit Form – for recording data
	Stream Verification Form (electronic or hardcopy) – for navigating to sampling station
	Maps of stream reach (aerial imagery & 1:24,000 USGS topographical map) – for navigating to sampling
	station
	Minnesota Atlas and Gazetteer (Delorme) – for navigating to sampling station
	Pencils – for filling out forms
	Permanent/Alcohol proof marker – for labeling jar and voucher tags
	Internal and External macroinvertebrate sample identification labels – to label sample containers
	100% reagent alcohol, (adequate volume to preserve 4 days of samples, ca. 10-15 gallons) – for
	preserving sample specimens
	Waterproof notebook – for making observations
	Chest waders – for safety during sampling
	Rain-gear – for comfort during sampling during inclement weather
	Camera – to document site conditions
	Plastic Sample Jars; wide-mouth, minimum 1 L capacity – for storing preserved specimens
	Box or crate - to store sample jars
	Canoe or Kayak if needed – for access to sampling station
	Backpack – carry equipment to and from a site

B. Data collection method

The location and length of the sampling reach is determined during site reconnaissance (see MPCA 2014b [Reconnaissance Procedures for Initial Visit to Stream Monitoring Sites]). The reach length, 35 times the mean stream width (MSW), is based on the distance necessary to capture a representative and repeatable sample of the fish community within a stream segment (Lyons 1992). Reach lengths are a minimum of 150 meters and a maximum of 500 meters. Sampling is conducted during daylight hours within the summer index period of late-July through October. Sampling should occur when streams are at or near base-flow because flood or drought events can have an effect on macroinvertebrate community structure and sampling efficiency.

Macroinvertebrate community sampling is conducted in conjunction with the water chemistry and physical habitat assessment protocols (see MPCA 2014c [Water Chemistry Assessment Protocol for Stream Monitoring Sites] and MPCA 2014d [MPCA Stream Habitat Assessment (MSHA) Protocol for Stream Monitoring Sites]). Additional protocols that may be used during a site visit include: MPCA 2012 [Stream Condition and Stressor Identification (SCSI) protocol for Stream Monitoring Sites] and MPCA 2014e [Channel Condition and Stability Index (CCSI): MPCA protocol for assessing the Geomorphic

<u>Condition and Stability of Low-Gradient Alluvial Streams</u>]. Macroinvertebrate sampling should occur after water chemistry collection so as not to disrupt the sediments prior to collecting water samples. However, the macroinvertebrate sampling should be conducted prior to any physical habitat assessment so as not to disturb the macroinvertebrate community prior to sampling.

C. Assessing stream habitats

Before sampling can begin, the crew leader and field technician must determine which habitats are present in the reach. This should be a cooperative effort. This is done by walking the sample reach and determining which productive habitats dominate the stream reach. A site visit form should be filled out during this process or immediately following sample collection. Ideally the stream should be viewed from the top of the stream bank, but this is generally the exception rather than the rule. For this reason, care should be taken to walk along the stream edge or any streamside exposed areas. If this is not possible, stay to one side of the stream so as to disturb as little substrate as possible.

NOTE

Sampling should be conducted in a downstream to upstream fashion, it will save time to start the initial visual inspection of the stream from the upstream end of the sampling reach and walk downstream. This will allow you to start sampling at the downstream end of the reach as soon the inspection is completed.

The multi-habitat method entails collecting a composite sample from up to five different habitat types. The goal of this method is to get a sample representative of the macroinvertebrate community of a particular sampling reach, it is also to collect and process that sample in a time and cost effective manner. For that reason, the habitats described below are relatively non-specific, being chosen to represent broad categories rather than microhabitats. Every broad category includes numerous microhabitats, some of which will not be sampled. It is to the discretion of the sampler which microhabitats are most representative of a reach. As a general rule, sample in a manner that reflects the most common microhabitat of any given broad habitat category. The habitats to be sampled include:

Hard bottom (riffle/cobble/boulder)

This category is intended to cover all hard, rocky substrates, not just riffles. Runs and wadeable pools often have suitable "hard" substrates, and should not be excluded from sampling. The surfaces of large boulders and areas of flat, exposed bedrock are generally quite unproductive, avoid including these habitats in the sampling area if possible. This is a general rule, if a particular stream has productive exposed bedrock, or boulder surfaces, those habitats should be considered sampleable.

Aquatic macrophytes (submerged/emergent vegetation)

Any vegetation found at or below the water surface should be considered in this category. Emergent vegetation is included because all emergent plants have stems that extend below the water surface, serving as suitable substrate for macroinvertebrates. Do not sample the emergent portion of any plant.

Undercut banks (undercut banks/overhanging vegetation)

This category is meant to cover in-bank or near-bank habitats, shaded areas away from the main channel that typically are buffered from high water velocities.

Snags (snags/rootwads)

Snags include any piece of large woody debris found in the stream channel. Logs, tree trunks, entire trees, tree branches, large pieces of bark, and dense accumulations of twigs should all be considered snags. Rootwads are masses of roots extending from the stream bank into the water.

Leaf packs

Leaf packs are dense accumulations of leaves typically present in the early spring and late fall They are found in deposition zones, generally near stream banks, around logjams, or in current breaks behind large boulders.

It can be difficult to estimate total stream coverage of certain habitats due to their appearance as linear or two dimensional features. Undercut banks and overhanging vegetation can appear as linear features despite their depth, while snags, woody debris, vegetation mats, and emergent vegetation can appear flat despite their three dimensional nature. For these reasons, best professional judgment must be used to determine what level of effort is adequate to equal one "sample effort" for any given substrate. Keep in mind that this method is considered qualitative, rulers and grids are not necessary to effectively implement this procedure.

D. Sampling macroinvertebrates

After the number of productive sampleable habitats have been determined, the sampling team should proceed in a downstream to upstream manner, sampling the habitats present. Sampling consists of dividing 20 sampling efforts equally among the dominant, productive habitats present in the reach. If 2 habitats are present, each habitat should receive 10 sampling efforts. If 3 habitats are present, each habitat should receive 7 sampling efforts. If a productive habitat is present in a reach but not in great enough abundance to receive an equal proportion of sampling efforts, it should be thoroughly sampled and the remaining samples should be divided among the remaining habitat types present.

NOTE

In order to get complete samples, the contents of the D-net should be emptied into a sieve bucket frequently. This prevents the back flow of water resulting from a clogged net. In larger streams, it is convenient for each sampler to have a sieve bucket. This allows samplers to sample independent of each other, avoiding frequent stream crossings, which can alter the stream bed.

A sample effort is defined as taking a single dip or sweep in a common habitat. A sweep is taken by placing the D-net on the substrate and disturbing the area directly in front of the net opening equal to the net width, ca. 1 ft². The net should be swept several times over the same area to ensure that an adequate sample is collected. Each effort should cover approximately 0.09 m² of substrate. Total area sampled is ca. 1.8 m². The following describes how to sample each habitat:

Hard bottom

Riffles and rocky runs are basically two dimensional areas, and should be thought of as such when trying to determine how dominant the riffle habitat is in a stream. It must be kept in mind that riffles are often the most productive and diverse habitat in the reach, relatively speaking.

The field personnel must be careful to not oversample riffles. The purpose of this method is to get a representative sample. Sampling in this habitat type is relatively simple. The D-net should be placed firmly and squarely on the substrate downstream of the area to be sampled. If the water is shallow enough, the area directly in front of the net should be disturbed with the hands, taking care to wash large rocks off directly into the net. If the water is too deep for this, kicking the substrate in front of the net is adequate. Watch for stoneflies and mayflies trying to crawl out of the net.

Vegetation

Aquatic vegetation is either completely submerged, mostly submerged and partially floating on the water's surface, or partially submerged and mostly extended above the water's surface. Things like pondweed, coontail, and milfoil tend to clump and float at the water's surface. These types of plants

should be sampled with an upward sweep of the net. If the net fills with weeds, the weeds should be hand washed vigorously or jostled in the net for a few moments and then discarded. Emergent plants such as reed canary grass and various plants in the rush family, should be sampled with horizontal and vertical sweeps of the net until it is felt that the area being swept has been adequately sampled. Plants like floating bur reed and water celery tend to float in long strands with the current. They can be floating on the surface or completely submerged. These plants should be sampled as emergent plants with horizontal and vertical sweeps in a downstream to upstream motion.

Undercut banks/ Overhanging vegetation

Undercut banks and overhanging vegetation follow the line of the stream bank. Undercut banks can vary in how undercut they are. An additional problem is that many banks appear undercut, but when investigated prove not to be. For these reasons, banks should be prodded to determine how deeply they are undercut. Overhanging vegetation should be treated the same way. Sampling should consist of upward thrusts of the net, beating the undercut portion of the bank or the overhanging vegetation, so as to dislodge any clinging organisms.

Snags

Snags and rootwads can be large or small, long or wide, simple or twisted masses of logs or twigs that do not have any consistent shape. Best professional judgment must be used to determine what a "sampling effort" is. Approximating the amount of sampleable surface area is a sensible method with larger tree trunks or branches. Masses of smaller branches and twigs must be estimated. Given their variable nature, there is not one best method for sampling snags. Using something like a toilet brush or kitchen brush works well for large pieces of wood, whereas kicking and beating with the net works best for masses of smaller branches.

Leaf packs

One square foot of leaf pack surface area that has two cubic feet of leaf underneath should be sampled near the surface, whereas a shallow leaf pack can be sampled in its entirety. Sweeping to the bottom of every leaf pack could create a disproportionately large amount of sample volume being collected for relatively small sample area. In most situations leaf packs will not be dominate enough to be included in a sample. If leaf packs are sampled, it is suggested that time be spent streamside washing macroinvertebrates off of leaves and discarding the leaves, as a leaf pack sample can easily become overwhelmingly large.

NOTE

While sampling, it may become necessary to clean the sample of muddy, fine sediment. This can be done by filling the sieve bucket with clean water and allowing the resulting mucky water to drain. Care must be taken not twist and turn the bucket too much, as this can damage some macroinvertebrates.

E. Preserving the sample

Once sampling is complete, the sample material should be preserved as quickly as possible. Transfer the sample material from the sieve bucket to the sample containers. Sample containers should contain no more than 30% of their volume as wet weight. Fill sample containers with 100% reagent alcohol to a level that ensures a final alcohol concentration of at least 70%. Be sure to thoroughly clean the bucket and sampling nets of all macroinvertebrates. The use of forceps might be necessary to dislodge some of the smaller organisms.

F. Labeling the sample

Fill out internal and external sample labels for each sample container using preprinted sample labels (see Appendix A). Be sure to use water and alcohol proof writing medium.

G. Stream invertebrate visit form

The "Stream Invertebrate Visit Form" should be filled out during the streamside survey, or notes should be taken on field note books and transferred to visit forms.

Macroinvertebrate sample processing and Quality Assurance/Quality Control procedures

These procedures are used for the processing and identification of freshwater macroinvertebrates. The procedures may be used by any person who has received training in processing samples. A laboratory staff member qualified to perform QC checks must be present when samples are processed by an inexperienced staff member, or when QC checks are needed for an experienced sorter's samples. This staff person is qualified by achieving a mean sorting efficiency of at least 90% over the previous 6 months.

Different sample processing methods may be used for different sample types or for different projects. The SOPs described in this document are for the sampling of lotic waters for the assessment of aquatic life beneficial uses (as described in 7050.0222, subparts 2c, 2d, 3c, 3d, 4c, and 4d). These macroinvertebrate samples use a 300 count subsample (tolerance of +/- 10%) with a Large/Rare search. For all methods described, some organisms are picked from the sample, but not counted (e.g., copepods and cladocerans). In addition, only aquatic and semiaquatic taxa are counted as part of the sample. The list of macroinvertebrates that are counted are listed in Appendix E.

Sample cleaning and preparation for subsampling

A. Equipment list

Verify that all necessary items are present before commencement of this procedure (Table 2).

Table 2. Sample preparation materials list.

٧	Item
	Caton screen(s)
	plastic holding tray(s) for Caton screen(s)
	1000 ml Nalgene jars
	ethanol
	scissors
	scoops
	spoons
	spatula
	latex gloves
	assorted scrapers
	3x lighted magnifier

٧	Item
	500 micron soil sieve
	sample splitting pan (for samples with large volumes)

NOTE

Be sure that all sorting equipment is thoroughly cleaned and free of organisms before beginning the preparation procedure.

B. General preparation procedure

- 1. Gently mix each sample in its jar(s).
- 2. Decant alcohol while pouring the sample out of each jar, using the 500 micron soil sieve (US #35) and the plastic Caton holding tray or 5 gallon bucket in the rinsing sink. If the sample is contained in several jars, empty and wash each jar one at a time. If the alcohol is not excessively stained or diluted, retain it for reuse as preservative for unsorted portion of sample, otherwise, discard the alcohol down the rinsing sink drain.
- 3. Pour the sample out into the 500 micron sieve, and retrieve all internal sample labels. Rinse all debris and organisms from the labels into the sieve.
- 4. Retrieve and save all labels. Check to make sure that the internal labels correspond with the bench sheet <u>and</u> the inventory. Labels are to be stapled to the back lower left of bench sheet once they are dried.
- 5. Gently rinse the sample jar, retaining all contents on the sieve.
- 6. Using the 500 micron sieve, gently wash the sample, running cold tap water over it to remove any fine material.
- 7. Transfer the sieve contents onto the Caton screen. If there are several sample jars, empty each onto the Caton screen as rinsing proceeds.
- 8. Rinse the sieve onto the Caton screen to collect any organisms or debris that may have been retained in the sieve. Inspect the sieve with the 3x lighted magnifier. Be sure the sieve is clean to prevent cross contamination between samples. Place all organisms retrieved from the sieve onto the Caton screen.
- 9. Place the Caton screen into the plastic holding tray. Add enough water to spread the sample evenly over the Caton screen. (Note: the water level should be close to the top of the plastic tray.) Move the sample into the corners of the pan using your hands, forceps, or other equipment. Agitate the tray and screen to help spread the sample. If the sample is composed of different types of material, be sure that there is thorough mixing of all types.
- 10. Remove large objects (sticks, stones, etc.) and examine them, using the 3x lighted magnifier when necessary. If organisms are found on these items, remove them and add them to the sample material on the Caton screen.
- 11. Lift the Caton screen out of the plastic tray to drain. Pour off the water from the plastic tray and set the screen back into the tray. Add just enough water to the tray so that it barely covers the screen while it is in the tray. Be careful not to add so much water that the sample material floats around.

C. Procedure precautions and exceptions

- 1. Never allow a sample to dry out during any stage of preparation or sorting.
- 2. Before beginning sample preparation, and after completion of preparation, be sure to examine sieves, Caton screens, spatulas, spoons, scoops, and all other materials to make sure that no organisms or sample residues are adhering to surfaces. These precautions prevent crosscontamination between samples.
- 3. Sample preparation and sorting is often complicated by the materials present in the samples. In every case, your goal is to mix materials as thoroughly as possible and randomly distribute mixed

- materials over the Caton screen. Do not keep disparate materials separate. Consider cutting materials with scissors before distributing them.
- 4. Woody chunks often appear clean, but if you crack them open, they often have macroinvertebrates that have burrowed into them.
- 5. Be aware of stony caddisfly cases, which can be very small.
- 6. If a sample is to be fully-picked, you do not need to distribute the sample as carefully as when a random sub-sample is needed.
- 7. If the ADAPTATION FOR LARGE VOLUMES, ADAPTATION FOR SMALL VOLUMES, or ELUTRIATION procedures are used, you must carefully document this on the bench sheet, and give accurate characterizations of the number of grids sorted (out of a total of 30) or the proportion of sample used.

D. Adaptation for large sample volumes

When the sample is contained in more than three jars, or is made up of an unusually large volume of material (the goal is to reduce the volume of material from a selected grid such that it will fit in a petri dish), use the following procedure to split the sample:

- 1. Rinse the contents of each jar one at a time, using the 500 micron sieve.
- 2. Empty the sieve contents into the splitting pan; repeat until all jars have been sieved, rinsed, and emptied into the splitting pan.
- 3. Using your hands or any other suitable equipment, mix the sample thoroughly in the splitting pan. Ensure that the sample is mixed well and evenly distributed in the splitting pan. If the sample is composed of different types of material, be sure that there is thorough mixing of all types. If necessary, add water to the sample to facilitate mixing, but don't overdo it, since too much water will make the sample difficult to split.
- 4. Once the sample is thoroughly mixed and evenly distributed, divide the sample in half using the spatula. You may need to use scissors as well for this step. Move material to the left and right of a line down the middle of the sample material.
- 5. Using the spatula and scissors if necessary, split the halves of the sample into quarters.
- 6. Using spoons and scoops, return three of the quarters to three separate jars. Carefully label these jars and keep them at your work station, away from other samples or archive material.
- 7. Pour the remaining quarter of the sample into the Caton screen, and spread it evenly using the General Preparation Procedures.
- 8. Carefully rinse the splitting pan and the 500 micron sieve to prevent contamination of the next sample.

NOTE

When samples are split in this way, each grid you remove during sorting procedures constitutes 1 of 120 grids, or ¼ of a grid when the 30 grid standard is used. Use of this procedure must be documented on the bench sheet (Appendix B). The "number of grids sorted" and/or the "sample proportion used" calculations must be accurately described, to document how much of the sample was used to produce the required subsample size.

E. Adaptation for small sample volume

When the sample contains very small amounts of material (especially Surber or Hess samples that are not composites):

- 1. Rinse the sample in the 500 micron sieve, transfer the sample onto the Caton screen, and rinse the sieve as for the General Preparation Procedures.
- 2. Place the Caton screen into the plastic tray, and add just enough water to "float" the sample material above the screen.
- 3. Using scoops, spatulas, or other appropriate equipment, move the sample material into half of the Caton screen, or, if necessary, into a guarter of the screen.

Note

When samples are condensed in this way, each grid you remove during sorting procedures constitutes a multiple number of grids when the 30 grid standard is used. For example, a single grid from half of the Caton tray must be recorded as 2 grids. Use of this procedure must be documented on the bench sheet (Appendix B). The "number of grids sorted" and/or the "sample proportion used" calculations must be accurately described, to document how much of the sample was used to produce the required subsample size.

Sorting and subsampling

A. Equipment list

Verify that all necessary items are present before commencement of this procedure (Table 3).

Table 3. Sample sorting and subsampling materials list.

٧	Item
	Caton screen and plastic holding tray, with mixed and randomly distributed sample material prepared with the procedures above
	Caton cookie-cutter and other appropriate grid delineation equipment
	An assortment of tweezers and forceps
	Dissecting needles
	Caton scoops, spoons, spatulas, and other appropriate equipment to lift sample materials out of the Caton screen
	Ethanol and water in labeled wash bottles
	Petri dishes
	Dissecting microscope (10x – 30x) with fiberoptic illuminator
	Vials and caps or stoppers
	Labels for each vial and jar
	Vial rack
	Correctly selected bench sheet
	Pencil
	Mechanical counters
	Magnifying lamp
	Jar(s) for sorted substrate
	Jar(s) for unsorted substrate

B. Rules for picking and counting organisms

ALL organisms should be removed from the sample substrate using the following rules:

- 1. Cladocerans and copepods *are not to be counted* AND if they are very abundant, they may be left behind in the substrate. If the sample is processed this way, record it on the bench sheet (Appendix B), and name the organisms that have been left behind.
- 2. Even organisms that are probably too small for definitive identification must be removed from the substrate. These organisms are to be placed in the vial(s) for the taxonomists.
- 3. As long as the head of an organism is present, it is to be picked for the taxonomists.
- 4. Do not pick or count fragments such as legs, antennae, gills, etc. if the head of the organism is not present. Do not pick or count obviously empty snail or clam shells or insect exuvia.
- 5. For worms, attempt to remove and count only whole organisms and fragments that include the head; do not pick or count fragments that do not include the head.
- 6. Organisms should be sorted into appropriate groups and each group placed in its own vial.
- 7. All vials should be labeled using pre-printed labels available for each project. In addition, the "picked but not counted" organism vial should be identified as such.

C. Sample sorting procedure

- 1. Use a random number generator, such as a pair of dice, to select a grid for sorting.
- 2. Use the Caton cookie-cutter device to delineate the selected grid, moving the sample material very slightly to push the material in the selected grid together, in order to make it easier to remove it from the tray.
- 3. Using a scoop, scraper, spoon, or other appropriate equipment, lift the grid contents into a petri dish, and add water from a wash bottle to the sample material to avoid desiccation and to disperse the material in the petri dish. Depending on the consistency of the sample material, it may be necessary to use scissors during these steps.
- 4. Examine the Caton screen for any remaining organisms. Use the following rules when dealing with organisms that lie on the line between two grids:
 - a. An organism belongs to the grid where its head is.
 - b. If you cannot determine where the head is, the organism belongs to the grid containing most of its body.
 - c. If part of an organism's head is on either side of the line, pick the organism if the line is on the "top" of the grid or the right side of the grid.
- 5. Examine the sample material in the petri dish under the microscope, and determine as closely as possible whether there are a large number of macroinvertebrates present. Estimate as closely as possible whether ¼ or more of the target number of organisms would be picked if the sample material from the selected grid were picked in its entirety.
 - d. If there are clearly less than ¼ of the target number, proceed to pick through this sample material: go to step 6.
 - e. If there are clearly more than ¼ of the target number, use the "Sorting Procedure for High Organism Density" below.

NOTE

If you determine that there are very few organisms in the initial grid, more than one grid can be removed from the Caton screen before sorting. Place the materials from each randomly selected grid in separate petri dishes with water. Be sure not to let these sample fractions dry out or get spilled. Place a label in each petri dish to properly identify each grid. It is also acceptable to combine the contents of several grids for sorting if you determine that the density of organisms is low and that combining grids will not result in sorting more organisms than the target.

- 6. Remove the macroinvertebrates from the sample material in each grid, using forceps. Place organisms for identification in the taxonomy vial(s). Place organisms that are to be excluded (not included in the taxonomic targets list [Appendix E]) in a separate vial. Sort through the substrate material thoroughly.
- 7. Using mechanical counters, keep a running count of the total number of organisms picked, as well as a separate count of the number of chironomids and the number of worms.
- 8. When the substrate from the first grid has been completely picked, empty the sorted substrate into a labeled jar and preserve this material with recycled ethanol. This material will be used for quality control checks.
- 9. Continue random selection and sorting of grids until the target number of organisms is attained. This includes a specific target of 300 organisms AND a complete pick of the final grid. To accomplish this, proceed as follows:
 - a. If completion of a grid results in a number that falls within the target tolerance, you are finished
 - b. If completion of the final grid will apparently result in a number that exceeds the target tolerance, place the organisms picked from the final grid into a separate vial. You must randomly remove organisms from this group so that the tolerance is not exceeded. Use the following procedure to ADJUST THE TOTAL COUNT TO CONFORM TO TARGET AND TOLERANCE:
 - i. Completely pick the final grid and place all of the organisms from this grid together into their own vial.
 - ii. Place the substrate from the final grid into the QC jar containing sorted substrate from all other grids.
 - iii. Using a petri dish scribed with "pie slices," pour out the organisms from the final grid, and distribute them evenly in the petri dish. Use an appropriate petri dish, that is, one scribed with a number of pie slices appropriate to the number of organisms that are to be removed from the total number.
 - iv. Randomly select a pie slice by using a random number generator, such as dice, and remove all of the organisms from the associated pie slice, counting the removed organisms as you go. Continue random selection of pie slices and removal of organisms until the number of organisms in the final subsample will be within the protocol tolerance for the project.
 - v. Place all removed organisms back into the unsorted substrate.
 - vi. Sort or place all organisms left in the petri dish in to the labeled vial(s) for taxonomy.
- 10. To complete the sample sorting, all unsorted substrate should be re-preserved in the original sample jar(s). Use recycled alcohol for re-preservation, and make sure that the jar is appropriately labeled. Store the unsorted substrate in the area reserved for unsorted substrate for the project.
- 11. Sorted substrate should be properly labeled and placed on the shelf reserved for sorting QAs.
- 12. Vials for taxonomists should all be appropriately labeled and banded together. Indicate on the bench sheet (Appendix B) the number of vials you have used for the sample. Place the vials in the

section of the tech refrigerator reserved for samples that have been sorted but not yet QA'd. These samples should not go to the taxonomy department until the sorted substrate QA is completed and the recovered organisms included with the taxonomy vials.

- 13. The bench sheet should be filled out during and after sample processing. Include the following information on the bench sheet in the spaces provided:
 - f. Initials of the sorting technician.
 - g. Date of sorting.
 - h. The number of hours (to the nearest ¼ hour) spent doing the entire sorting procedure, including rectification of a failed QA.
 - i. The number of grids sorted, and the number of grids occupied by the entire sample.
 - j. A preliminary count of the total number of picked and counted organisms, a count of the number of picked chironomids, and a count of the number of picked worms.
 - k. An analysis of the components of substrate encountered in the whole sample (i.e., before sieving and rinsing).
 - I. Information about special sample handling. For example, you should record things such as whether the sample was split, or whether large amounts of material (e.g., grasses, cobbles, etc.) were removed before the sample was placed in the Caton tray.
 - m. Difficulties encountered during sample processing, such as spills, rotten organisms, inappropriate sample odors or substrate components, etc.

D. Sorting procedure for high organism density

When the sample material in the first randomly selected grid contains more than ¼ of the target number of organisms:

- 1. In the petri dish, divide the sample material from the first grid into quarters, using a spatula, scraper, or other appropriate equipment.
- 2. Make a random selection of one of the quarters, and lift it into a separate petri dish. Place the remaining 3 quarters into the jar for unsorted substrate.
- 3. Proceed to pick the organisms from the selected quarter grid.
- 4. Make a random selection of another grid from the Caton tray and proceed as above.
- 5. If the first quarter grid contains the target number of organisms, you should select and sort a second quarter grid. This will likely result in exceedance of the target and tolerance. Use the procedure for "ADJUST THE TOTAL COUNT TO CONFORM TO TARGET AND TOLERANCE" above.
- 6. If using the ADAPTATION FOR LARGE SAMPLE VOLUMES (see the section <u>Sample cleaning and preparation for subsampling</u> above): there will be sample fractions in jars as a result of the initial sample splitting procedure. If the target number of organisms is not attained by fully sorting the contents of the first Caton tray, empty and disperse a second sample quarter onto the Caton screen, and proceed using the General Preparation Procedure above. If necessary, use the third and fourth sample quarters in sequence until the target is reached, or the entire sample is sorted.

E. Sorting procedures precautions and exceptions

- 1. Do not re-disperse the sample across the Caton screen after removing any portion of the sample.
- 2. AT <u>ALL</u> TIMES, PREVENT DESICCATION OF ALL SAMPLE FRACTIONS (i.e., Caton tray contents, contents of all petri dishes and vials). Also prevent contamination of the sample by organisms such as fruit and house flies.
- 3. The number of grids sorted must be clearly recorded on the bench sheet (Appendix B). If a special procedure was used, i.e., for large sample volumes or small sample volumes, the proportion of

- sample used must be calculated using the appropriate correction factors for partial grids or multiple grids.
- 4. Although partial sorting is typically necessary, it should be avoided if possible. Ideally, samples should be finished the same day they are begun. Sample sorting by multiple technicians should also be avoided. If it is necessary to store a partially sorted sample, it is important to stabilize the substrate material on the Caton screen so that the grids selected and removed remain distinct. The Caton tray should be completely covered and preservative or water adjusted so that sample desiccation does not occur. (The threat of sample desiccation is another reason why it is important to split large volume samples so that they "fit" into a Caton tray without being "top heavy."). The covered Caton tray must be refrigerated until sorting is completed. A label with the date and time that the sample was placed in the refrigerator should be attached to the covered tray such that it is clearly visible. Keep the bench sheet at your work station, but clearly indicate where the bench sheet is. For example, if you store bench sheets in a drawer, place a permanent label on the drawer indicating that you keep them there. A partially sorted sample should remain in the refrigerator for as little time as possible; generally no more than 24 36 hours. Technicians should check the dates on stored samples, and if a sample has been stored for more than 36 hours, the water or preservative in the Caton tray should be checked and adjusted if necessary.
- 5. You should always record the total number of grids on the bench sheet, being especially careful to note when the sorted "grids" are actually fractions of a regular Caton grid. Also record special procedures that you may have followed, such as the procedure for high organism density. The total number of grids you record must accurately reflect the proportion of the total sample volume you sorted to obtain the target number of organisms.
- 6. Before checking out another sample to work on, be sure that your work station has been cleared of all materials related to the prior sample. There should be no jars, vials, labels, or other materials related to any other sample at your workstation before you bring another sample there.

F. Large/rare search

The MPCA sorting procedure includes a Large/Rare search. Use the following general procedure, unless the project specifications call for a different procedure.

The goal of the Large/Rare search is to add organisms which may not have been collected in the random subsampling procedure:

- 1. It may be useful to review the organisms collected during the random subsampling procedure before doing the Large/Rare search.
- 2. Once sorting and subsampling procedures are finished, the remaining unsorted substrate should be searched, using the magnifying lamp, for 5 to 10 minutes.
- 3. Organisms that did not occur in the random subsampling should be collected and placed in a vial, appropriately labeled with the sample identifier numbers, but also labeled "L/R," so that it is not confused with the organisms collected during the random subsampling procedure.
- 4. It may be difficult to differentiate between organisms already collected in the random subsampling and those found in the Large/Rare search. If there is doubt about whether an organism has already been collected, it should be included in the Large/Rare vial just to be safe.
- 5. It is only necessary to collect a single specimen of a Large/Rare organism, even if it is found to occur more than once in the unsorted substrate. However, try to collect the best possible specimens.
- 6. If a sample has been split because of large sample volume, all of the unsorted substrate must be included in the Large/Rare search. Sample fractions may be searched one at a time, or all together in

- separate Caton screens. For large volume samples, the Large/Rare search may need more than 5-10 minutes.
- 7. Count the Large/Rare specimens as they are placed in the vial, and record the number of organisms included in the appropriate place on the bench sheet (Appendix B).
- 8. If the sorting QA/QC procedures have not yet been done on the sample, the number of L/R organisms is not to be included in the calculation of sorting efficiency.

Quality assurance for sorting and subsampling

These procedures are used to check sorting efficiency. This should be tracked for each technician and for each project. The procedures may be used by a laboratory staff member qualified to perform quality control (QC) checks. This staff person is qualified by achieving a mean sorting efficiency of at least 90% over the previous 6 months. All sorted samples should be checked for sorting efficiency as soon as possible after sorting has taken place:

- 1. Equipment and materials:
 - a. Similar to General Preparation Procedure and Sorting Procedure above.
- 2. All of the sorted substrate from the selected sample is poured out and evenly distributed in the Caton screen, using the General Preparation Procedure methods.
- 3. Twenty percent of the sorted substrate will be examined under the dissecting scope by the QC technician. Lift the contents of the appropriate number of randomly selected grids into petri dishes and carefully examine the substrate for missed organisms.
- 4. Any missed organisms should be enumerated and placed into a separate, labeled vial for taxonomy. Record the number of recovered organisms on the bench sheet (Appendix B). This number is added to the final sorted count of the sample.
- 5. Sorting efficiency is calculated using the following basic formula:

Percent sorting efficiency =
$$(A / A + B) \times 100$$

where: A is the number of organisms found by the sorting technician, and B is the number of missed organisms found by the QC technician

Since during sample processing, only 20% of the sorted substrate is typically examined, the basic formula must be adapted to account for this proportion. For example, if 20% of the sample was resorted, 20% of the actual total number of organisms picked for the subsample is calculated and reported by the sorting technician. This number is used for A in the formula above.

- 6. A sample passes the QC check if the sorting efficiency equals or exceeds 90%.
- 7. If a sample fails the QC check, the failure must be rectified: the sorting technician must resort all of the substrate remaining in the Caton tray. Place recovered organisms into labeled vials for taxonomy.
- 8. If the addition of recovered organisms results in exceedance of the tolerance for the target number, the sample must be reduced in size using the ADJUSTMENT OF TOTAL COUNT TO CONFORM TO TARGET AND TOLERANCE above.
- 9. The QA technician should record QA check information in the appropriate spaces on the sample bench sheet (Appendix B). Recorded information should include:
 - a. The initials of the tech performing the QA check.
 - b. The proportion of the sorted substrate examined for the QA check (usually this is 20%, but may differ from this proportion in some circumstances).

- c. The number of organisms recovered from the examined substrate, and the percentage of total organisms this represents (this percentage is the sorting efficiency). This calculation is based on the proportion of sorted substrate examined and an equal proportion of the number of organisms picked by the sorting technician.
- d. A "pass" or "fail" determination based on the results of the above calculation.
- e. Whether or not rectification was performed, if a "fail" results.
- f. The amount of time, to the nearest ¼ hour, spent on the QA procedure (not including rectification).

Macroinvertebrate identification and enumeration

A. Taxonomist requirements

Identification of macroinvertebrates needs to be performed by trained taxonomists. This includes a lead taxonomist and other taxonomists that fulfill the following roles and have with the following qualifications:

1. LEAD TAXONOMIST

- a. <u>Roles:</u> Provides identification, taxonomic oversight, internal QC, and problem specimen identification.
- b. <u>Qualifications</u>: Must have at least one year's experience with fauna from the Midwestern United States; Masters Degree or Ph.D. in one of the following areas: Water Resources Science; Zoology; Biology or Ecology; 10 Years of taxonomic experience working with aquatic macroinvertebrates; Certifications: Society for Freshwater Science (SFS) Genus-level, Chironomidae EAST, EPT Genera EAST.

2) TAXONOMIST

- a. Roles: Provides identification of macroinvertebrate samples.
- b. <u>Qualifications:</u> Must have at least one year's experience with fauna from the Midwestern United States; B.A. or B.S. in Biological Area (i.e., Biology, Ecology, Environmental Studies); 1 Year of taxonomic experience working with aquatic macroinvertebrates; Certifications: Society for Freshwater Science (SFS) Genus-level, Chironomidae EAST, EPT Genera EAST

B. Equipment list

Verify that all necessary items are present before commencement of this procedure (Table 4).

Table 4. Macroinvertebrate identification and enumeration materials list.

٧	Item
	Waterproof paper labels and water/solvent proof marker
	80 percent ethanol
	Squeeze bottles (for ethanol and water)
	4 oz. jars, with plastic or foam-line cap
	Dissecting scope with a 10x minimum power
	Fine tipped forceps, watchmaker type
	Vials, with polyseal caps -2,4, and 8 dram

C. General sample identification procedure

- 1. Empty contents of the taxonomy vial(s) into a petri-dish.
- 2. To facilitate identification, sort organisms according to major taxonomic groups (i.e., Plecoptera, Trichoptera, or Coleoptera). Different groups can be placed in separate, 60mm petri-dishes or kept separate in several larger petri-dishes.
- 3. Identify organisms to the target taxonomic level (see Appendix E for taxonomic targets). The desired level is genus for many taxa, although this varies depending on the feasibility and need for finer taxonomic resolution.
- 4. Organisms should be counted as they are identified, and removed to another dish or placed back in the sample vial to avoid miscounting.

Note

Final identifications are to be made by experienced taxonomists. Preliminary identifications made by interns, or inexperienced taxonomists must be verified by a staff member whose name appears on the macroinvertebrate QC list. When making identifications, the taxonomist should refer to taxonomic reference materials. Many taxonomic references contain high quality pictures, but identifications are never to be made using pictures alone. The proper way to make an identification includes taking a specimen through a dichotomous key, checking range distribution, checking habitat preference, and checking for seasonal emergence and growth patterns. If any questions remain about the identity of a specimen, consult another staff taxonomist, or a regional or taxonomic group specialist.

- 5. When large numbers of individual taxa are present, a laboratory counter should be used to keep a running total. Counters should be labeled to avoid confusion if using more than one counter.
- 6. If an organism is encountered for the first time in the laboratory, remove it to its own vial for inclusion in the voucher collection. Make a note of this on the Invertebrate Identification and Enumeration Sheet (Appendix B).

D. Large/rare sample identification

- 1. The Large/Rare sample should be identified and enumerated separate from the main sub-sample.
- 2. Sort organisms according to major taxonomic groups (i.e., Plecoptera, Trichoptera, or Coleoptera)
- 3. Different groups can be placed in separate, 60-mm petri dishes or kept separate in several larger petri-dishes.
- 4. Identify organisms to the lowest practical taxonomic level (see Appendix E for taxonomic targets). The desired level is genus for many taxa, although this varies depending on the feasibility and need for finer taxonomic resolution.
- 5. Organisms should be counted as they are identified, and removed to another dish or placed back in the sample vial to avoid miscounting.
- 6. Record numbers of Large/Rare organisms in the Large/Rare column of the macroinvertebrate identification bench sheet (Appendix B).

Note

It is imperative that organisms which are a part of the Large/Rare sample are kept separate from the multihabitat subsample and quantitative sample. Large/Rare organisms are only used in taxa richness measures, so it is most important that their presence is noted.

Quality Assurance/Quality Control procedure for macroinvertebrate identification

It is required that 10% of all samples are sent to an external lab for an additional check on taxonomy. The goal of this additional step is to ensure that the lab is following updated taxonomic rules, to improve on lab taxonomy, and correct any persistent taxonomic errors.

Calculation of Minnesota Macroinvertebrate IBIs

The Index of Biotic Integrity (IBI) is one of the primary tools used by the Minnesota Pollution Control Agency (MPCA) to determine if streams are meeting their aquatic life use goals. Calculation of an IBI involves the synthesis of macroinvertebrate community information into a numerical expression of stream health. In order to apply the MPCA Macroinvertebrate IBI (MIBI) to a macroinvertebrate dataset, it is essential that all data is collected using MPCA field and laboratory protocols (See protocols above). This section details the process for calculating the Minnesota MIBIs from raw macroinvertebrate samples.

Summary of MIBI development

To account for natural differences in macroinvertebrates communities in Minnesota, streams are assigned to different stream types. These stream types use different MIBI models and biocriteria to determine the condition of the macroinvertebrate assemblage and their attainment or nonattainment of the aquatic life beneficial use. The MPCA stratified Minnesota streams into nine macroinvertebrate stream types based on the expected natural composition of stream macroinvertebrates (Table 5). Stream type is differentiated by drainage area, geographic region, thermal regime, and gradient. These stream types are used to determine thresholds (i.e., biocriteria) that interpret the calculated MIBI as meeting or exceeding the aquatic life use goal. MIBIs were developed from five individual macroinvertebrate stream groups, with large rivers, wadeable high gradient and wadeable low gradient stream types each being combined for the purposes of metric testing and evaluation. A complete description of the development of MIBIs can be found in MPCA (2014a).

Table 5. List of MIBI groups, stream types, and stream type descriptions.

MIBI Group	Stream Type	Stream Type Geographic Description	Drainage Area	
	1 - Northern Forest Rivers	Rivers in the Laurentian Mixed Forest Province	>=500 Sq. Miles	
Large Rivers	2 - Prairie and Southern Forest Rivers	Rivers in the Eastern Broadleaf Forest, Prairie Parklands, and Tall Aspen Parklands ecological provinces	>=500 Sq. Miles	
Wadeable High-	07030005		<500 Sq. Miles	
Gradient Streams (RR) 5 - Southern Streams RR		High Gradient Streams in the Eastern Broadleaf Forest, Prairie Parklands, and Tall Aspen Parklands ecological provinces, as well as streams in HUC 07030005	<500 Sq. Miles	
Wadeable	4 - Northern Forest Streams GP	Low Gradient streams in the Laurentian Mixed Forest ecological province, excluding streams in HUC 07030005	<500 Sq. Miles	

MIBI Group	Stream Type	Stream Type Geographic Description	Drainage Area	
Low- Gradient	6 - Southern Forest Streams GP	Low Gradient Streams in the Eastern Broadleaf Forest, as well as streams in HUC 07030005	<500 Sq. Miles	
Streams (GP)	7 - Prairie Streams GP	Low Gradient Streams in the Prairie Parklands, and Tall Aspen Parklands ecological provinces	<500 Sq. Miles	
Northern Coldwater Streams	8 - Northern Coldwater	Coldwater Streams in northern portions of Minnesota, characterized by the Laurentian Mixed Forest ecological province. Excluding streams in HUC 07030005	N/A	
Southern Coldwater Streams	9 - Southern Coldwater	Coldwater Streams in southern portions of Minnesota, characterized by the Eastern Broadleaf Forest, Prairie Parkland, and Tall Aspen Parklands ecological provinces. Including streams in HUC 07030005	N/A	

Determining stream type

Prior to calculating an MIBI score for a given sampling location, the stream reach must be categorized into a macroinvertebrate stream type. This requires a determination of the drainage area, geographic region, thermal regime, and gradient for a stream site. Determination of each of these stream characteristics is described below and a dichotomous key for stream type determination is provided in Appendix C.

Drainage area - Drainage area must be determined for all stream reaches sampled. There is one large river MIBI applied to rivers greater than 500 square miles (although determination of the applicable biocriterion also requires determination of region membership). All other stream types apply to streams less than 500 square miles.

Region – The macroinvertebrate stream types follow a geographic framework based on the Minnesota Department of Natural Resources Ecological Classification system. The only exception is the portion of the Laurentian Mixed Forest which falls in the St. Croix River – Stillwater watershed (HUC 07030005) and is grouped with southern stream types. Figure 1 shows the geographic framework used for the purpose of assessment and biocriteria development.

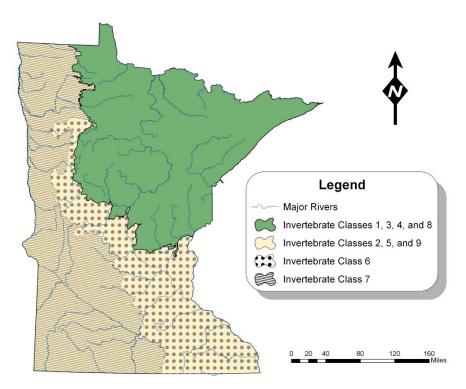


Figure 1. Map of ecological provinces associated with MPCA macroinvertebrate indices of biological integrity (MIBIs).

Temperature – For purposes of the application of stream water quality standards, the MPCA recognizes two temperature stream types: 1) warmwater/coolwater (Classes 2Bd, 2B, and 2C) and 2) coldwater (Class 2A). Similarly, temperature regime was a primary factor in the development of stream types used for MIBI development. The determination of a stream's coldwater designation can be found in Minn. R. 7050.0470.

Gradient – Two of the five MIBI stream groups are categorized using stream gradient. Gradient is determined based on flow conditions and the presence of riffles. If a stream reach includes riffles as representative habitat, and has flow adequate to create an environment supportive of riffle dwelling organisms, then a stream would be considered as high gradient, or riffle/run (RR). If these conditions are not met, then a stream is considered low gradient, or glide/pool (GP). Table 6 outlines criteria used by the MPCA to determine gradient category.

Table 6. Dichotomous key for determining stream type membership.

Riffle/Run (RR) vs. Glide Pool (GP) Designation Guidance					
<u>Criteria</u>	<u>Yes</u>	<u>No</u>			
1. Has the sampler indicated on the stream visit form that 'riffle/run' is the 'Dominant invertebrate habitat in reach'?	RR	#2			
2. In the mulithabitat sample, was any portion collected from riffles or rocky runs?	go to #3	GP			
3. Was there a riffle present in the sample reach?	go to #4	GP			
4. Flow over riffle perceptible?	go to #5	GP			
5. #'Riffle/run, rocky substrate' samples > 4?	RR	go to #6			
6. Use a weight of evidence approach pulling in comments from macroinvertebrate visit form, habitat					
data from fish visit, sample reach photos, aerial photos, and geomorphology GIS layer to address the following:					
	RR	GP			
Extent of riffle in sample reach (%)	<u>≥</u> 5%	< 5%			
Gradient of sample reach	>1	<u>≤</u> 1			
Evidence from site photos or aerial photos of obvious high-gradient					
stream segments.					

Data collection and organization

In order to calculate a Minnesota MIBI score for a macroinvertebrate sample, data must be collected and processed using MPCA protocols (see protocol sections above). In order to calculate metric values it is necessary to use the same taxonomic targets and taxonomic attributes used by the MPCA. These attributes have been assigned using a variety of external sources, as well internally calculated tolerance values (Appendix D). Attributes used in the calculation of metric values include taxonomy, functional feeding group, tolerance related to general disturbance, tolerance related to thermal regime, habitat, and longevity.

Counting taxa: In order to correctly calculate the value of richness or relative richness metrics, taxa must be counted in a consistent manner. The target taxonomic level of determination is genus for the majority of organisms that will be encountered in a typical stream sample. Appendix E includes a table with the taxonomic target for organisms used in calculating the metrics that comprise the Minnesota MIBIs. In the process of identifying a sample, it is common to have organisms identified to multiple levels within a taxonomic group, i.e., distinct family, genus and species level identifications for organisms within the same family. When this happens, only organisms at the highest level (typically genus) should be considered when counting distinct taxa. If species-level identifications are made, they must be grouped at the genus level for the purpose of metric calculation. Likewise, if individuals are left at the family level due to poor condition or early instar, while individuals within the family are identified to a higher level, .e.g., genus, the family-level identification should not be counted.

Calculating metric and IBIs scores

Metric values are the raw numeric expression of taxonomic or autecological information at either the community or individual level. Metric values are derived for each target metric group as explained in the Metric Type descriptions below. The tables in Appendix F detail the metrics for each metric group, including the information needed to calculate each metric value.

Metric types

Richness — Richness metrics are calculated based on the taxonomic richness of the target group identified for the metric. When calculating richness, only taxa determined to be countable, as described above, are to be considered. Richness groups can be defined by taxonomy, tolerance, life habit, functional feeding group, or other meaningful autecological classifications. Example metric – Intolerant Taxa: if there are 20 countable intolerant taxa in a sample, the "Intolerant Taxa" metric value would be 20.

Relative richness (percent taxa) – Relative richness metrics are calculated based on the taxonomic richness of the target group identified for the metric, relative to total taxonomic richness in the sample. When calculating, relative richness only taxa determined to be countable, as described above, are to be considered. The groups can be defined by taxonomy, tolerance, life habitat, functional feeding group, or other meaningful autecological classifications. Example metric – Clinger Percent Taxa: if there are 6 countable clinger taxa in a sample with 24 total countable taxa, the "Clinger % Taxa" metric value would be 25% (6/24).

Relative abundance — Relative abundance metrics are calculated based on the abundance of the target group identified for the metric, relative to total sample abundance. When calculating relative abundance, all individuals that meet the group criteria are to be tallied, not only those that are considered countable, as with richness metrics. The groups can be defined by taxonomy, tolerance, life habit, functional feeding group, or other meaningful autecological classifications. Example metric — Percent Plecoptera: if there are 50 Plecoptera individuals in a sample with 350 total individuals, the "Percent Plecoptera" metric value would be 14.3% (50/350).

Ratio – Ratio metrics represent the ratio of one group to another. The ratio can be an expression of richness or abundance. The only ratio metric calculated for a Minnesota MIBI, is the Chironomidae:Diptera ratio metric. This metric is the ratio of Chironomidae abundance to total Diptera abundance. Example metric – Chironomidae:Diptera: if there are 50 Chironomidae individuals in a sample with 65 total Diptera individuals, the "Chironomidae:Diptera" metric value would be 0.77 (50/65).

Biotic index – A biotic index is calculated by determining the abundance weighted average of the tolerance values of each taxon present in a sample that has been assigned a tolerance value. When calculating a biotic index, abundances should be summed up to the highest level to which a tolerance value is assigned, i.e., if a tolerance value is not assigned to a taxon identified to a higher taxonomic resolution it should be summed with the next lowest taxonomic group. There are two Biotic Index metrics calculated for Minnesota MIBIs, the Minnesota Hilsenhoff Biotic Index and the Minnesota Coldwater Biotic index. The tolerance values used in these calculations were derived from data collected as part of the MPCA biomonitoring effort, and supplemented with other national or regional tolerance values where necessary. The tolerance values can be found in the table in Appendix D.

Calculating metric scores

Metric scores are derived from metric values. Metric scores range from 0 to 10, and their derivation is as follows:

Step 1 – Metric value transformation. Transformation is applied to correct skewed metrics. If indicated in the metric table for the relevant MIBI (Appendix F), the metric value should be transformed using the indicated transformation.

Step 2 – Drainage area correction. Drainage area correction is applied to remove a metrics relationship with drainage area. Drainage area corrected metrics are only tabulated for the Southern Coldwater MIBI. If indicated in Appendix F, Table 5 the metric value should be corrected using the drainage area for the sample location, and the slope and constant provided. The correction is calculated as follows:

Corrected metric value = $(metric value)-(((slope)*log_{10}(drainage area))+constant)$

Step 3 – Scaling metric values from 0 to 10 points. Each metric is scored on a continuous scale from 0 to 10. There are two ways to score a metric, depending on the metrics predicted response to disturbance (Appendix F). Metrics that respond negatively to disturbance will have metrics scores positively correlated with metric values (positive metrics). Metrics that respond positively to disturbance will have metric scores inversely related to metric values (negative metrics). In order to limit the effect of extreme values when deriving metric scoring criteria, upper and lower limits were established by determining the 5th and 95th percentiles of each metric. These limits are documented as ceiling and floor values in Appendix F. The documented limits reflect the limits of the metric value; for the purposes of scoring, the limits must be treated similar to the metric value if a needed transformation is indicated. For positive metrics, values less than the 5th percentile (minimum) are given a score of 0, those with values greater than the 95th percentile (maximum) are given a score of 10, and metric scores in between are interpolated linearly. For negative metrics, values less than the 5th percentile (minimum) are given a score of 10, those with values greater than the 95th percentile (maximum) are given a score of 0, and metric scores in between are interpolated linearly. The formulas for calculating metric scores are as follows:

Formula for calculating positive metric scores: $metric\ score = \frac{metric\ value-5th\ percentile\ value}{95th\ percentile\ value-5th\ percentile\ value}*\ 10$

Formula for calculating negative metric scores: $metric\ score = \frac{95th\ percentile\ value-metric\ value}{95th\ percentile\ value-5th\ percentile\ value} * 10$

Calculating IBI scores

Calculation of the MIBI score for a stream sample is done by summing the metric scores and scaling the summed scores to maximum score of 100. The formula for scaling IBI scores is as follows:

Formula for scaling summed metrics score to 100: $IBI\ score = sum\ of\ metric\ scores * rac{10}{\#\ metrics\ in\ IBI}$

References

Barbour M. T., J. Gerritsen, B. D. Snyder & J. B. Stribling (1999) Rapid bioassessment protocols for use in streams and wadeable rivers: Periphyton, benthic macroinvertebrates, and fish. EPA 841-B-99-002. US Environmental Protection Agency, Washington, DC.

Lyons, J. (1992) The length of stream to sample with a towed electrofishing unit when fish species richness is estimated. North American Journal of Fisheries Management. 16:241-256.

Merritt R. W. & K. W. Cummins (1996) An introduction to the aquatic insects of North America. Kendall/Hunt, Dubuque, IA.

MPCA (2012) Stream Condition and Stressor Identification (SCSI) protocol for Stream Monitoring Sites. Minnesota Pollution Control Agency, St. Paul, MN (Available at:

https://www.pca.state.mn.us/sites/default/files/wq-bsm3-05.pdf).

MPCA (2014a) Development of macroinvertebrate indices of biological integrity (MIBI) for Minnesota streams. Minnesota Pollution Control Agency, St. Paul, MN (Available at: https://www.pca.state.mn.us/sites/default/files/wq-bsm4-01.pdf).

MPCA (2014b) Reconnaissance Procedures for Initial Visit to Stream Monitoring Sites. Minnesota Pollution Control Agency, St. Paul, MN (Available at:

https://www.pca.state.mn.us/sites/default/files/wq-bsm3-04.pdf).

MPCA (2014c) Water Chemistry Assessment Protocol for Stream Monitoring Sites. Minnesota Pollution Control Agency, St. Paul, MN (Available at:

https://www.pca.state.mn.us/sites/default/files/wq-bsm3-06.pdf).

MPCA (2014d) MPCA Stream Habitat Assessment (MSHA) Protocol for Stream Monitoring Sites. Minnesota Pollution Control Agency, St. Paul, MN (Available at: https://www.pca.state.mn.us/sites/default/files/wq-bsm3-02.pdf).

MPCA (2014e) Channel Condition and Stability Index (CCSI): MPCA protocol for assessing the Geomorphic Condition and Stability of Low-Gradient Alluvial Streams. Minnesota Pollution Control Agency, St. Paul, MN (Available at:

https://www.pca.state.mn.us/sites/default/files/wq-bsm3-09.pdf).

MPCA (2016) Guidance Manual for Assessing the Quality of Minnesota Surface Waters for Determination of Impairment 305(b) Report and 303(d) List: 2016 Assessment and Listing Cycle. Minnesota Pollution Control Agency, St. Paul, MN (Available at: https://www.pca.state.mn.us/sites/default/files/wq-iw1-04i.pdf).

Poff N. L., J. D. Olden, N. K. M. Vieira, D. S. Finn, M. P. Simmons & B. C. Kondratieff. (2006) Functional trait niches of North American lotic insects: traits-based ecological applications in light of phylogenetic relationships. Journal of the North American Benthological Society 25: 730-755.

Appendix A: Field visit form and field data labels for collecting macroinvertebrates from Minnesota streams

MPCA Stream Monitoring Program

STREAM INVERTEBRATE VISIT FORM

	am Name: Date:								
Field	Number:		County:			Crew:			
	Water Chemistry Tape Down: (1/100ths ft) Location:								
Time:	: (24 hr):	Air Temp	O:(°C)	Wat	er Tem	p:	(°C) Condu	ctivity:	(umhos@25°C)
DO: _	(r	mg/L) DO	% Saturation:_				pH:	_ Secchi -Tube: _	(cm)
Water	r Level: Nor	mal Bel	ow((m)	Abov	'e	(m)	Color	(pcu)
							hing a new site, fill		
	Coordinates		LATITUDE		L	O	NGITUTDE	Time:	
Field	GPS:							Name:	
Notes	3:	<u>'</u>							
			Stre	am (Classific	atio	on Information		
F	low over riffle(s)		High / Med / L	ow/	NA -	ถ	Excavated, trapezoid	al channel	%
F	Flow at reach cons		High / Med / L		NA	Channel	Shallow excavation,		%
Flow	low over run		High / Med / L	ow/	NA	5	Natural channel		%
ц (General flow patte	ern	High / Med / L	ow/	NA		Emergent, aquatic ve	getation in channel	Ext / Mod / Sparse / NA
Iı	ntermittent sectio	ns	Yes / No			non	Emergent, aquatic ve	getation along bank	Ext / Mod / Sparse / NA
, R	Riffle (with flow)	present in rea	ich 🗌			vegetation	Floating or submerge	ed aquatic vegetation	Ext / Mod / Sparse / NA
	Riffle (with flow)				I '	>	Loosely attached fila		Ext / Mod / Sparse / NA
Ha			with bridges or bank s				Firmly attached algae		Ext / Mod / Sparse / NA
								Bank-Overhanging Veg	g Wood Leaf
<u>1</u>	Dominant Run Su						/ gravel / sand / sil		
stra	Dominant Pool Su		bedrock / b				<u> </u>		
Sub	Dominant Pool Substrate bedrock / boulder / cobble / gravel / sand / silt Dominant Substrate receiving flow bedrock / boulder / cobble / gravel / sand / silt Dominant Substrate receiving flow bedrock / boulder / cobble / gravel / sand / silt Dominant Substrate in reach bodrock / boulder / cobble / gravel / sand / silt								
	Dominiant Substrate in feach bedrock / boulder / cobble / graver / sand / snt			organisms					
	Stream displays a typical riffle-run pool morphology adequate flow to maintain riffle organisms inadequate flow to maintain riffle organisms. Stream has adquate flow to maintain riffle organism, but does not have suitable coarse substrate to support these assemblages (riffles, rock substrate in runs or po								
	Stream has adquate flow to maintain riffle dwelling organism, woody debris has replaced rocks as primary coarse substrate								
	Stream is low gradient, stream bed is predominately fine substrate, inadequate flow to maintain riffle organisms								
			le Information		<u> </u>	Additional Biological Information			
	_ ~		Presence of freshwater sponge yes / no						
			types present in the each of the three d			1.	Presence of exotic species yes / no		
			present, but not in at			Name of exotic(s) if present:			
sample	in equal proportion	to other habita	ats, sample as much	as po		(voucher a specimen if not present in sample)			
divide t	the remaining samp	les between the	e dominant habitat t	ypes.		Presence of musselsyes / no			
~		Habitat		#S	amples			ensity and/or mussel be	•
	rock riffle/run		earry insects into net		p		_		
rock substrate Artificial flow needed to carry insect									
aquatic macrophyte			Notes						
undercut bank, overhanging veg			ı		Notes				
snag, woody debris, root wad		+							
	leaf pack								
Number of multihabitat containers:									
						Pi	ctures #: DD	DUMDM	U _UD _UU

Stream Sample External Label:

MPCA Bioassessment – Invertebrate Sample Sample Preservative - 100% reagent alcohol / 10% formalin Sample Type: QMH / RTH Sample Composition: Riffle / Bank / Wood / Veg
Date//20 (mm/dd/yyyy)
Station NameStation ID
Site Visit 1 / 2 Sample Jar of Collectors
Stream Sample Internal Label:

Invertebrate Sample – sample type								
Site Name:								
Field Number								
Date:/ Bottle Noof								
Collected by:								

Appendix B: Examples of macroinvertebrate sorting and identification bench sheets

-MPCA Biological Monitoring Program-

Macroinvertebrate Sample Sorting Bench Sheet

Field	Sample	Sample	# Sample	Sample S	orting Date	# Organisms	# Squares	L/R	Chiro
Number	Sample Date	Sample Type *	# Sample Bottles	F		# Organisms Picked	# Squares Picked**	(y/n)	toVial (y/n)
				Begin	End				(y/II)
* OMIL OD H									

^{*} QMH, QR, HD, WTL

^{**} Applies only to samples being subsampled

-MPCA Biological Monitoring Program-

Macroinvertebrate Sorting QC Form

Sample Field Number	Sampling Date	Sample Type	Initials of QC Sorter	# Organisms found in QC	# Organisms originally found in sample	Sorting Efficiency	Date QC Sort Completed

-MPCA Biological Monitoring Program-Macroinvertebrate Identification Lab Bench Sheet

Field Number					mple Date								
Site Name					Taxonomist:								
	e QMH* QR	HD other		Dat	Date of Sample ID:/								
*A processed QMH samp	ole consists of 2 parts, the	subsample(ss) and large/rare (l/r), both	parts m						•				
Order/Family	Genus	Species/Notes	SS	l/r	Order/Family	Genus	Species/Notes	SS	l/r				
<u>Ephemeroptera</u>					<u>Odonata</u>	-							
Baetiscidae	Baetisca				Calopterygidae	Calopteryx							
Caenidae	Bracycercus Caenis				Coenagrionidae	Hetaerina Argia							
Ephemerellidae	Attenella				Cochagnonidae	Enallagma							
	Ephemerella					Nehalennia							
	Serratella				Lestidae	Lestes							
Ephemeridae	Ephemera				Aeshnidae	Aeschna							
	Hexagenia					Anax			ļ				
Leptohyphidae	Tricorythodes					Basiaeschna							
Leptophlebiidae	Leptophlebia Paraleptophlebia				Cordulegastridae	Boyeria Cordulegaster			1				
Polymitarcidae	Ephoron				Corduliidae	Cordulia							
Potamanthidae	Anthopotamus					Dorocordulia							
Heptageniidae	Epeorus					Epitheca							
	Heptagenia					Somatochlora							
	Stenacron				Gomphidae	Dromogomphus			-				
Isonychiidae	Stenonema Isonychia					Gomphurus Gomphus			<u> </u>				
Ametropodidae	Ametropus					Hagenius			1				
Baetidae	Acerpenna					Ophiogomphus							
	Baetis					Phanogomphus							
	Callibaetis					Progomphus							
	Heterocloeon				notes/additional tax	<u>xa</u>							
notes/additional tax	<u>a</u>												
					<u>Hemiptera</u>				T				
Plecoptera					Belostomatidae	Belstoma							
Leuctridae						Corixidae							
Taeniopterygidae					Corixidae	Hesperocorixa							
Perlidae	Acroneuria					Sigara			ļ				
	Agnetina Attaneuria				Nepidae	Trichocorixa Ranatra							
	Neoperla				Notonectidae	Buenoa							
	Paragnetina				reconconduc	Notonecta			1				
	Perlinella				notes/additional tax		I	1					
Perlodidae													
Pteronarycyidae	Pteronarcys												
notes/additional tax	<u>a</u>					1	1	,					
					<u>Amphipoda</u>				-				
					Talitridae	Hyallela	azteca						
<u>Lepidoptera</u>			1		Gammaridae notes/additional tax	Gammarus							
Pyralidae	Paraponyx				notos, adamentar tar	nu .							
. y.aaa	Petrophila												
notes/additional tax		1		I	Decapoda								
					Cambaridae	Cambarus							
<u>Megaloptera</u>						Orconectes							
Corydalidae	Chauliodes					Procambarus							
	Corydalus				notes/additional tax	<u>xa</u>							
0	Nigronia												
Sialidae	Sialis		<u> </u>	<u> </u>	Pology made	Ī		ı	I				
notes/additional tax	<u>a</u>				Pelecypoda Sphaeriidae			-	<u> </u>				
					Corbiculidae								
<u>Isopoda</u>					Unionidae				†				
Asselidae	Asselus				notes/additional tax	<u>xa</u>	1	1					
notes/additional tax	1	1											
	_												

entered into DataInverts by _____ --- (initials) date_

Trichoptera Dipseudopsidae Hydropsycidae Philopotamidae	Phylocentropus Ceratopsyche Cheumatopsyche			<u>Diptera</u>				
Dipseudopsidae Hydropsycidae	Ceratopsyche	+			•			
Hydropsycidae	Ceratopsyche			Ceratopogonidae	Alluaudomyia			
Philopotamidae	Cheumatoneveho			, ,	Atrichopogon			
Philopotamidae					Bezzia			
Philopotamidae	Diplectrona				Ceratopogon			
Philopotamidae	Hydropsyche				Culicoides			
Philopotamidae	Potamyia				Nilobezzia			
•	Chimarra				Palpomyia			
	Dolophilodes				Probezzia			
Polycentropodidae	Cernotina				Sphaeromias			
·	Cyrnellus			Chironomidae	G.			
	Neureclipsis			Dixidae	Dixa			
	Paranyctiophylax				Dixella			
	Polycentropus			Simuliidae	Simulium			
Psychomyiidae	Lype			Tipulidae	Antocha			
· · · ·	Psychomyia			'	Dicranota			
Glossosomatidae	Agapetus				Hexatoma			
	Glossosoma				Limnophila			
	Protoptila				Limonia			
Hydroptilidae	Hydroptila				Pilaria			
	Leucotrichia				Tipula			
	Mayatrichia			Athericidae	Atherix			
	Oxyethira			Empididae	Hemerodromia			
	Orthotrichia			Tabanidae	Chrysops			
Rhyacophilidae	Rhyacophila				Tabanus			
Brachyecentridae	Brachycentrus			notes/additional taxa	1		<u> </u>	<u>.</u>
	Micrasema				-			
Helicopsychidae	Helicopsyche							
Lepidostomatidae	Lepidostoma							
Leptoceridae	Ceraclea			Coleoptera				
	Leptocerus			Dytiscidae	Agabus			
	Mystacides			2)1100.000	Laccophilus			
	Nectopsyche				Liodessus			
	Oecetis			Gyrinidae	Dineutus			
	Trianodes			Cyaac	Gyrinus			
Limnephilidae	Limnephilus			Elmidae	Ancyronyx			
	Hydatophylax				Dubiraphia			
Molannidae	Molanna				Macronychus			
Phryganeidae	Phryganea				Optioservus			
· ··· y garreraae	Ptilostomis				Stenelmis			
Sericostomatidae	Agarodes			Hydrophilidae	Berosus			
notes/additional taxa		I		riyaroprimaao	Helocombus			
					Laccobius			
					Sperchopsis			
					Tropisternus			
Gastropoda	1						1	_
Ancylidae	Ferrissia						1	
Planorbidae	Helisoma	-		Annelida	Oligochaeta		1	
. idilolbidae	Promentus	-		- amonaa	Hirudinea		1	
	Planorbula			notes/additional taxa	1	<u>l</u>	1	
	Gyraulus	-		,	-			
Vivaparidae	Campeloma	-						
Lymnaeidae	Lymnaea	-						
-, madado	Bulimnea	+						
	Fossaria			Hydracarina (tromb	idoformes			
	Josefia			acarina)	adolonnes,			
Hydrobiidae	Amnicola			Nematoda				
Pleuroceridae	Pleurocera			notes/additional tax	Са	l		
Physidae	Physa							
notes/additional tax		-1	l	<u>l</u>				
	-							

-MPCA Biological Monitoring Program-

Macroinvertebrate Identification QC Form

Field Number	Sample Date	Identifiers' Initials		Discre	epancies	Comments	Total # of Conflicts	Total # of Taxa	Prec	ision
		Original ID	QC ID	Original Identification	QC Identification				Original ID	QC ID

Appendix C: Dichotomous key for determining macroinvertebrate stream type membership

1a. 1b.	Drainage area >500 mi ²
Rivers 2a.	Sampling site located in the Laurentian Mixed Forest Province
2b.	Sampling site located in the Eastern Broadleaf Forest, Prairie Parklands, or Tall Aspen Parklands province
Strean	ns
3a. 3b.	Sampling site is in a designated coldwater stream (Class 2A)
Coldw	ater Streams
4a.	Sampling site is in the Laurentian Mixed Forest ecological province (excluding streams in HUC 07030005)
4b.	Sampling site is in the Eastern Broadleaf Forest, Prairie Parkland, or Tall Aspen Parklands province (including streams in HUC 07030005)Southern Coldwater Streams
Warm	water and Coolwater Streams
5a.	Sampling site is high gradient (riffle/run; see Table 6)
5b.	Sampling site is low gradient (glide/pool; see Table 6) Low Gradient Streams 7
High G	radient (RR) Streams
6a.	Sampling site is in the Laurentian Mixed Forest ecological province (excluding streams in HUC 07030005)
6b.	Sampling site is in the Eastern Broadleaf Forest, Prairie Parkland, or Tall Aspen Parklands province (including streams in HUC 07030005)
Low G	radient (GP) Streams
7a.	Sampling site is in the Laurentian Mixed Forest ecological province (excluding streams in HUC 07030005)
7b.	Sampling site is in the Eastern Broadleaf Forest province (including streams in HUC 07030005) Southern Forest Streams GP
7c.	Sampling site is in the Prairie Parkland or Tall Aspen Parklands province Prairie Streams GP

Appendix D: Taxonomic trait information

The following table includes a list of the macroinvertebrate taxa in the MPCA database and their associated taxonomic traits. The taxonomic traits in this database are derived from several sources including: Merritt and Cummins (1996), Barbour et al. (1999), Poff et al. (2006) and the Freshwater Biological Traits Database (https://www.epa.gov/risk/freshwater-biological-traits-database-traits). The Minnesota Tolerance and Coldwater Tolerance values are Minnesota specific and were developed using Minnesota's biological monitoring database. The fields in this table are as follows:

TSN (Taxonomic Serial Number): The TSN is a unique identifier that for a scientific name that does not include information on the status, rank, or taxonomic position of the organism. See the Integrated Taxonomic Information System (ITIS) (https://www.itis.gov/) for more information.

Name1: This field includes the scientific name of the taxon. Depending on the taxon, this field can include any taxonomic level from genus to phylum.

Name2: This field includes the species name if available.

FFG (Functional Feeding Group): This field classifies aquatic macroinvertebrates by their method of food acquisition and functional role in aquatic food webs. Abbreviations: cf = collector-filterer, cg = collector-gatherer, hb = herbivore, pa = parasite, pr = predator, sc = scraper, and sh = shredder.

Habit: This field refers to how a macroinvertebrate moves in the aquatic environment and where they find food. Abbreviations: burr = burrower, clim = climber, skat = skater, spra = sprawler, and swim = swimmer.

MN Tolerance: Tolerance values were calculated using the weighted average of a general disturbance measure where taxa relative abundance was the weighting factor. The general disturbance measure was the first principal component of a principal components analysis of six disturbance variables including Minnesota's Human Disturbance Score (HDS), the Minnesota Stream Habitat Assessment score, total phosphorus, total suspended solids, NH₄, and nitrate/nitrite.

Coldwater Tolerance: Coldwater sensitivity values were calculated using the weighted average of stream temperatures where taxa relative abundance was the weighting factor.

LongLived: These are macroinvertebrates that are relatively long-lived with a life cycle of more than 1 year (i.e., semivoltine).

Some fields in this table are blank due to a lack of autecological information on the taxa or in the case of the "MN Tolerance" and Coldwater Tolerance" metrics, an insufficient number of occurrences of these taxa to calculate these values. In some cases, the attributes for lower taxonomic units (e.g., species) are derived from higher taxonomic units due to the lack of the information at finer taxonomic resolutions.

TSN	Name1	Name2	FFG	Habit	MN Tolerance	Coldwater Tolerance	LongLived
-65	Acentrella	rallatoma	cg	swim		20.96	FALSE
-64	Kloosia		cg	burr	6.00		FALSE
-63	Anafroptilum		cg	swim	4.29		FALSE
-62	Kribiodorum	perpulchra	cg	burr			FALSE
-61	Allocladius		cg	spra			FALSE
-51	Neostempellina	reissi	cf	burr			FALSE
-49	Kribiodorum	perpulchrum	cg	burr			FALSE
-48	Kribiodorum		cg	burr			FALSE
-47	Radotanypus		pr	spra			FALSE
-45	Pericoma / Telmatoscopus		cg	burr	4.00		FALSE
-36	Thienemannimyia Gr.		pr		7.90	20.07	FALSE
-20	Bezzia/Palpomyia		pr	spra	6.00	19.10	FALSE
-19	Odontomyia /Hedriodiscus		cg	clim			FALSE
-8	Phanogomphus		pr	burr	5.00		TRUE
48739	Hydrozoa		pr				FALSE
50844	Hydridae		pr		9.36	21.03	FALSE
50845	Hydra		pr		9.25	22.02	FALSE
53964	Turbellaria		pr	spra	4.00		FALSE
57577	Prostoma		pr				FALSE
59490	Nematoda		pr		5.00		FALSE
64183	Nematomorpha		pr	burr	5.00		FALSE
64357	Annelida						FALSE
68422	Oligochaeta		cg	burr	6.00		FALSE
68440	Lumbriculidae		cg	burr	6.00		FALSE
68441	Lumbriculus		cg	burr	6.00		FALSE
68450	Stylodrilus		cg	burr			FALSE
68531	Enchytraeus		cg	burr	6.00		FALSE
68541	Henlea		cg	burr			FALSE
68544	Mesenchytraeus		cg	burr	6.00		FALSE
68638	Limnodrilus		cg	burr	6.00		FALSE
68679	Aulodrilus		cg	burr	6.00		FALSE
68779	Bothrioneurum	vejdovskyanum	cg	burr			FALSE
68780	Spirosperma		cg	burr	6.00		FALSE
68794	Quistadrilus	multisetosus	cg	burr	6.00		FALSE
68839	Rhyacodrilus		cg	burr	6.00		FALSE
68854	Naididae		cg	burr	6.00		FALSE
68856	Slavina	appendiculata	cg	burr	6.00		FALSE
68871	Stylaria		cg	burr	6.00		FALSE
68872	Stylaria	lacustris	cg	burr			FALSE
68876	Pristina		cg	burr	6.00		FALSE
68898	Dero		cg	burr	6.00		FALSE

TSN	Name1	Name2	FFG	Habit	MN Tolerance	Coldwater Tolerance	LongLived
68934	Chaetogaster		cg	burr	6.00		FALSE
68946	Nais		cg	burr	6.00		FALSE
68995	Ophidonais		cg	burr	6.00		FALSE
68996	Ophidonais	serpentina	cg	burr	6.00		FALSE
69021	Bratislavia		cg	burr	6.00		FALSE
69168	Branchiobdellida		cg	clim			FALSE
69169	Branchiobdellidae		cg	clim	9.00	21.85	FALSE
69180	Branchiobdella		cg	burr			FALSE
69290	Hirudinea		pr	swim	10.00		FALSE
69357	Glossiphoniidae		pr	clim	6.19	20.20	FALSE
69363	Placobdella		pr	clim	6.00		FALSE
69366	Placobdella	ornata	pr	clim	6.00		FALSE
69367	Placobdella	multilineata	pr	clim	6.00		FALSE
69369	Placobdella	hollensis	pr	clim	6.00		FALSE
69380	Glossiphonia		pr	clim			FALSE
69381	Glossiphonia	complanata	pr	clim			FALSE
69389	Alboglossiphonia	heteroclita	pr	clim			FALSE
69396	Helobdella		pr	clim	6.30	20.10	FALSE
69397	Helobdella	elongata	pr	clim	6.30	20.10	FALSE
69398	Helobdella	stagnalis	pr	clim	6.30	20.10	FALSE
69403	Helobdella	papillata	pr	clim	6.30	20.10	FALSE
69407	Hirudinidae		pr	swim	7.00		FALSE
69408	Haemopis		pr	swim			FALSE
69438	Erpobdellidae		pr	swim	4.19	18.12	FALSE
69444	Erpobdella		pr	swim		19.12	FALSE
69455	Nephelopsis		pr	swim	6.06	17.05	FALSE
69456	Nephelopsis	obscura	pr	swim	6.06	17.05	FALSE
69459	Gastropoda		sc		7.00		FALSE
70304	Viviparidae		sc	clim	1.56	20.23	FALSE
70305	Viviparus		sc	clim	1.00		FALSE
70311	Campeloma		sc	clim	2.47	18.49	TRUE
70312	Campeloma	decisum	sc	clim	2.47	18.49	TRUE
70328	Cipangopaludina		sc	clim			FALSE
70345	Valvatidae		sc	clim	6.78	22.49	TRUE
70346	Valvata		sc	clim	6.80	22.50	TRUE
70354	Valvata	tricarinata	sc	clim	6.80	22.50	TRUE
70359	Valvata	lewisi	sc	clim	6.80	22.50	TRUE
70493	Hydrobiidae		sc	clim	4.56	20.81	FALSE
70505	Probythinella		sc	clim			FALSE
70605	Fontigens		sc	clim			FALSE
70736	Pomatiopsis		sc	clim			FALSE

TSN	Name1	Name2	FFG	Habit	MN Tolerance	Coldwater Tolerance	LongLived
70747	Amnicola		SC	clim	2.98	21.28	FALSE
70794	Bithynia	tentaculata	sc	clim			FALSE
71541	Pleuroceridae		sc	clim	5.00		FALSE
71542	Goniobasis		SC	clim			FALSE
71549	Pleurocera		sc	clim	3.70		TRUE
71550	Pleurocera	acuta	SC	clim	3.70		TRUE
76483	Lymnaeidae		sc	clim	9.59	20.14	FALSE
76484	Lymnaea		sc	clim	7.16		FALSE
76487	Lymnaea	stagnalis	SC	clim	7.16		TRUE
76497	Fossaria		SC	clim	6.36	19.88	FALSE
76528	Pseudosuccinea		sc	clim	9.41	20.89	FALSE
76529	Pseudosuccinea	columella	sc	clim	9.41	20.89	FALSE
76532	Bulimnaea		SC	clim			FALSE
76533	Bulimnaea	megasoma	SC	clim			FALSE
76534	Stagnicola		sc	clim	10.00	19.80	FALSE
76568	Ancylidae		sc	clim	7.07	20.97	FALSE
76569	Ferrissia		SC	clim	7.07	20.97	FALSE
76577	Laevapex	fuscus	SC	clim			FALSE
76591	Planorbidae		sc	clim	8.17	20.33	FALSE
76592	Gyraulus		sc	clim	8.21	19.72	FALSE
76599	Helisoma		sc	clim	7.36	21.16	TRUE
76600	Helisoma	anceps	sc	clim	7.36	21.16	FALSE
76621	Promenetus		SC	clim	6.83	18.70	FALSE
76622	Promenetus	exacuous	sc	clim	6.83	18.70	FALSE
76625	Promenetus	umbilicatellus	sc	clim	6.83	18.70	FALSE
76626	Menetus		sc	clim	5.48		FALSE
76629	Planorbula		sc	clim	9.11	20.12	FALSE
76630	Planorbula	armigera	sc	clim	9.11	20.12	FALSE
76643	Micromenetus		sc	clim			FALSE
76654	Planorbella		SC	clim	10.00	20.84	FALSE
76658	Planorbella	campanulata	sc	clim	10.00	20.84	TRUE
76671	Planorbella	trivolvis	sc	clim	10.00	20.84	FALSE
76676	Physidae		SC	clim	10.00	20.35	FALSE
76677	Physa		sc	clim	10.00	20.35	FALSE
76683	Physa	integra	sc	clim	10.00	20.35	FALSE
76695	Aplexa		SC	clim			FALSE
76697	Aplexa	elongata	SC	clim			FALSE
76698	Physella		SC	clim	8.00		FALSE
79118	Bivalvia		cf		8.00		TRUE
79913	Unionidae		cf	burr	1.13		TRUE
79951	Elliptio		cf	burr	8.00		FALSE

TSN	Name1	Name2	FFG	Habit	MN Tolerance	Coldwater Tolerance	LongLived
79986	Lampsilis		cf	burr			TRUE
80170	Proptera		cf	burr			FALSE
80297	Elliptoideus		hb	burr			FALSE
81339	Dreissena	polymorpha	cf	clng			FALSE
81381	Corbiculidae		cf	burr	6.00		FALSE
81388	Pisidiidae		cf	burr	7.82	20.46	FALSE
81391	Sphaerium		cf	burr	4.70		FALSE
81400	Pisidium		cf	burr	4.60		FALSE
84195	Ostracoda		cg		8.00		FALSE
85257	Copepoda		cg				FALSE
92120	Isopoda		cg		8.00		FALSE
92657	Asellidae		cg	spra	7.69	19.42	FALSE
92658	Asellus		cg	spra	6.49	19.88	FALSE
92666	Lirceus		cg	spra	8.00		FALSE
92686	Caecidotea		cg	spra	8.23	19.19	FALSE
93294	Amphipoda		cg	spra	4.00		FALSE
93745	Gammaridae		cg		6.05	17.00	FALSE
93773	Gammarus		cg	spra	6.05	17.00	FALSE
93790	Gammarus	pseudolimnaeus	cg	spra	6.05	17.00	FALSE
94025	Hyalella		cg	spra	7.30	21.43	FALSE
94026	Hyalella	azteca	cg	spra	7.30	21.43	FALSE
95081	Crangonyx		cg	spra	5.26	19.98	FALSE
95599	Decapoda		sh		8.00		TRUE
97336	Cambaridae		cg	spra	9.85	20.66	TRUE
97337	Cambarus		cg	spra	6.00		TRUE
97338	Cambarus	diogenes	cg		6.00		TRUE
97421	Orconectes		cg	spra	9.41	20.85	TRUE
97424	Orconectes	rusticus	cg		9.41	20.85	TRUE
97425	Orconectes	virilis	cg		9.41	20.85	TRUE
97446	Orconectes	immunis	cg		9.41	20.85	TRUE
97490	Procambarus		cg	spra	6.00		TRUE
99237	Collembola		cg				FALSE
99246	Isotomurus		cg	skat			FALSE
99643	Entomobryidae		cg	skat			FALSE
100502	Ephemeroptera		cg		4.00		FALSE
100504	Heptageniidae		sc	clng	7.63	20.78	FALSE
100507	Stenonema		sc	clng	6.94	21.06	FALSE
100516	Stenonema	femoratum	sc	clng	6.94	21.06	FALSE
100548	Stenonema	vicarium	sc	clng	6.94	21.06	FALSE
100572	Rhithrogena		pr	clng	0.00	17.61	FALSE
100602	Heptagenia		sc	clng	9.46	20.07	FALSE

TSN	Name1	Name2	FFG	Habit	MN Tolerance	Coldwater Tolerance	LongLived
100626	Epeorus		cg	clng	0.00	19.11	FALSE
100649	Epeorus	vitreus	cg	clng	0.00	19.11	FALSE
100676	Leucrocuta		sc	clng	8.46	20.67	FALSE
100692	Nixe		pr	clng	0.00		FALSE
100713	Stenacron		cg	clng	7.25	20.47	FALSE
100714	Stenacron	interpunctatum	cg	clng	7.25	20.47	FALSE
100742	Stenacron	minnetonka	cg	clng	7.25	20.47	FALSE
100744	Macdunnoa		sc	clng			FALSE
100749	Raptoheptagenia		pr	swim			FALSE
100755	Baetidae		cg	swim	7.19	19.44	FALSE
100771	Pseudocloeon		sc	swim	8.96	20.55	FALSE
100794	Heterocloeon		sc	swim	0.18		FALSE
100796	Heterocloeon	curiosum	sc	swim	0.18		FALSE
100800	Baetis		cg	swim	6.78	18.29	FALSE
100801	Acentrella		cg	swim	8.46	20.96	FALSE
100808	Baetis	intercalaris	cg	clng	6.78	18.29	FALSE
100817	Baetis	tricaudatus	cg	spra	6.78	18.29	FALSE
100825	Baetis	brunneicolor	cg	clng	6.78	18.29	FALSE
100835	Baetis	flavistriga	cg	clng	6.78	18.29	FALSE
100873	Centroptilum		cg	swim	6.06	20.64	FALSE
100899	Paracloeodes		sc	swim	5.87	22.75	FALSE
100901	Paracloeodes	minutus	sc	swim	5.87	22.75	FALSE
100903	Callibaetis		cg	swim	10.00	21.68	FALSE
100951	Siphlonuridae		cg	swim	7.00		FALSE
100953	Siphlonurus		cg	swim	7.00		FALSE
100987	Acanthametropus		pr	swim	1.00		FALSE
100996	Ameletus		sc	swim	0.00		FALSE
101041	Isonychia		cf	swim	8.47	21.44	FALSE
101045	Isonychia	bicolor	cf	swim	8.47	21.44	FALSE
101057	Isonychia	rufa	cf	swim	8.47	21.44	FALSE
101062	Isonychia	sicca	cf	swim	8.47	21.44	FALSE
101078	Metretopodidae		pr	swim	1.00	19.80	FALSE
101079	Siphloplecton		cg	swim	1.00	19.80	FALSE
101084	Siphloplecton	interlineatum	cg	swim	1.00	19.80	FALSE
101095	Leptophlebiidae		cg	clng	3.27	19.91	FALSE
101096	Traverella		pr	clng			FALSE
101108	Choroterpes		cg	clng	2.00		FALSE
101122	Habrophlebiodes		sc	swim	6.00		FALSE
101148	Leptophlebia		cg	swim	3.36	20.40	FALSE
101153	Leptophlebia	cupida	cg	swim	3.36	20.40	FALSE
101183	Habrophlebia		cg	swim	1.00		FALSE

TSN	Name1	Name2	FFG	Habit	MN Tolerance	Coldwater Tolerance	LongLived
101187	Paraleptophlebia		cg	swim	3.80	19.77	FALSE
101232	Ephemerellidae		cg	clng	1.00	19.75	FALSE
101233	Ephemerella		cg	clng	0.26	18.69	FALSE
101241	Ephemerella	subvaria	cg	clng	0.26	18.69	FALSE
101255	Ephemerella	aurivillii	cg	clng	0.26	18.69	FALSE
101276	Ephemerella	excrucians	cg	clng	0.26	18.69	FALSE
101282	Ephemerella	invaria	cg	clng	0.26	18.69	FALSE
101317	Timpanoga		cg	clng	7.00		FALSE
101324	Eurylophella		cg	clng	1.34	20.68	FALSE
101326	Eurylophella	temporalis	cg	clng	1.34	20.68	FALSE
101332	Eurylophella	funeralis	cg	clng	1.34	20.68	TRUE
101334	Eurylophella	bicolor	cg	clng	1.34	20.68	FALSE
101338	Attenella		cg	spra	0.00		FALSE
101340	Attenella	attenuata	cg	clng	0.00		FALSE
101360	Dannella		cg	swim			FALSE
101395	Serratella		cg	clng	0.56	18.97	FALSE
101405	Tricorythodes		cg	spra	8.81	21.87	FALSE
101429	Leptohyphes		pr	clng	4.00		FALSE
101461	Neoephemera		cg	clng			FALSE
101466	Neoephemera	bicolor	cg	clng			FALSE
101467	Caenidae		cg	spra	8.80	21.47	FALSE
101468	Brachycercus		cg	spra	7.40		FALSE
101478	Caenis		cg	spra	8.79	21.47	FALSE
101479	Caenis	tardata	cg	spra	8.79	21.47	FALSE
101483	Caenis	diminuta	cg	spra	8.79	21.47	FALSE
101486	Caenis	hilaris	cg	burr	8.79	21.47	FALSE
101488	Caenis	latipennis	cg	spra	8.79	21.47	FALSE
101494	Baetisca		cg	swim	7.36	20.77	FALSE
101504	Baetisca	lacustris	cg	spra	7.36	20.77	FALSE
101505	Baetisca	laurentina	cg	spra	7.36	20.77	FALSE
101525	Ephemeridae		cg	burr	9.39	21.08	FALSE
101526	Ephemera		cg	burr	3.87	20.47	TRUE
101530	Ephemera	simulans	cg	burr	3.87	20.47	TRUE
101535	Ephemera	varia	cg	burr	3.87	20.47	TRUE
101537	Hexagenia		cg	burr	9.78	21.31	FALSE
101538	Hexagenia	bilineata	cg	burr	9.78	21.31	FALSE
101552	Hexagenia	limbata	cg	burr	9.78	21.31	TRUE
101566	Litobrancha			burr			FALSE
101569	Polymitarcyidae		cg	burr	7.35	21.03	FALSE
101570	Ephoron		cg	burr	7.38	21.09	FALSE
101571	Ephoron	album	cg	burr	7.38	21.09	FALSE

TSN	Name1	Name2	FFG	Habit	MN Tolerance	Coldwater Tolerance	LongLived
101593	Odonata		pr	clim			FALSE
101594	Anisoptera		pr		6.00		FALSE
101596	Aeshnidae		pr	clim	7.38	19.64	TRUE
101597	Anax		pr	clim	8.13	21.55	TRUE
101598	Anax	junius	pr	clim	8.13	21.55	TRUE
101603	Aeshna		pr	clim	7.99	19.17	TRUE
101605	Aeshna	umbrosa	pr	clim	7.99	19.17	TRUE
101607	Aeshna	verticalis	pr	clim	7.99	19.17	TRUE
101609	Aeshna	constricta	pr	clim	7.99	19.17	TRUE
101634	Gomphaeschna		pr	clim	4.00		TRUE
101635	Gomphaeschna	furcillata	pr	clim	4.00		TRUE
101645	Boyeria		pr	clim	5.33	19.35	TRUE
101646	Boyeria	grafiana	pr	clim	5.33	19.35	TRUE
101647	Boyeria	vinosa	pr	clim	5.33	19.35	TRUE
101648	Basiaeschna		pr	clim	6.00	21.80	TRUE
101649	Basiaeschna	janata	pr	clim	6.00	21.80	TRUE
101653	Nasiaeschna		pr	clim	4.00		TRUE
101664	Gomphidae		pr	burr	3.75	20.66	TRUE
101665	Gomphus		pr	burr	7.11	21.09	TRUE
101666	Stylurus		pr	burr			TRUE
101672	Gomphus	viridifrons	pr	burr	7.11	21.09	TRUE
101685	Gomphus	lividus	pr	burr	7.11	21.09	TRUE
101700	Gomphus	graslinellus	pr	burr	7.11	21.09	TRUE
101718	Progomphus		pr	burr	1.00		TRUE
101725	Erpetogomphus		pr	burr	5.00		TRUE
101726	Erpetogomphus	designatus	pr	burr	5.00		FALSE
101730	Dromogomphus		pr	burr	3.00		TRUE
101734	Hagenius		pr	spra	1.00		TRUE
101735	Hagenius	brevistylus	pr	burr	1.00		TRUE
101738	Ophiogomphus		pr	burr	0.00	19.65	TRUE
101740	Ophiogomphus	rupinsulensis	pr	burr	0.00	19.65	TRUE
101745	Ophiogomphus	carolus	pr	burr	0.00	19.65	TRUE
101755	Ophiogomphus	colubrinus	pr	burr	0.00	19.65	TRUE
101770	Arigomphus		pr	burr	6.00		TRUE
101797	Libellulidae		pr	spra	7.17	21.38	FALSE
101803	Perithemis		pr	spra	6.85		FALSE
101808	Plathemis		pr	spra	8.00		FALSE
101809	Plathemis	lydia	pr	spra	8.00		FALSE
101851	Didymops		pr	spra	4.00		TRUE
101852	Didymops	transversa	pr	spra	4.00		TRUE
101854	Dorocordulia		pr	spra	5.00		TRUE

TSN	Name1	Name2	FFG	Habit	MN Tolerance	Coldwater Tolerance	LongLived
101856	Dorocordulia	libera	pr	spra	5.00		TRUE
101885	Leucorrhinia		pr	clim	9.00		FALSE
101893	Libellula		pr	spra	9.00		FALSE
101896	Libellula	quadrimaculata	pr	spra	9.00		FALSE
101918	Macromia		pr	spra	0.82	19.60	TRUE
101921	Macromia	illinoiensis	pr	spra	0.82	19.60	TRUE
101922	Macromia	taeniolata	pr	spra	0.82	19.60	TRUE
101934	Neurocordulia		pr	clim	3.54	19.19	TRUE
101936	Neurocordulia	molesta	pr	clim	3.54	19.19	TRUE
101937	Neurocordulia	yamaskanensis	pr	clim	3.54	19.19	TRUE
101940	Neurocordulia	xanthosoma	pr	clim	3.54	19.19	TRUE
101947	Somatochlora		pr	spra	5.14	20.46	TRUE
101955	Somatochlora	elongata	pr	spra	5.14	20.46	TRUE
101958	Somatochlora	minor	pr	spra	5.14	20.46	TRUE
101960	Somatochlora	walshii	pr	spra	5.14	20.46	TRUE
101976	Sympetrum		pr	spra	10.00		FALSE
101978	Sympetrum	corruptum	pr	spra	10.00		FALSE
101979	Sympetrum	vicinum	pr	spra	10.00		FALSE
101981	Sympetrum	obstrusum	pr	spra	10.00		FALSE
101990	Sympetrum	semicinctum	pr	spra	10.00		FALSE
102014	Cordulia		pr	spra			TRUE
102015	Cordulia	shurtleffi	pr	spra			TRUE
102020	Corduliidae		pr	clim	3.88	19.87	TRUE
102026	Cordulegastridae		pr	burr	0.00		TRUE
102027	Cordulegaster		pr	burr	0.00		TRUE
102029	Cordulegaster	erronea	pr	burr	0.00		TRUE
102031	Cordulegaster	maculata	pr	burr	0.00		TRUE
102035	Epitheca		pr	clim	4.13		TRUE
102036	Epitheca	canis	pr	clim	4.13		TRUE
102043	Calopterygidae		pr	clim	5.85	20.60	FALSE
102048	Hetaerina		pr	clim	7.85	22.55	FALSE
102049	Hetaerina	titia	pr	clim	7.85	22.55	FALSE
102050	Hetaerina	americana	pr	clim	7.85	22.55	FALSE
102052	Calopteryx		pr	clim	5.03	20.42	TRUE
102055	Calopteryx	maculata	pr	clim	5.03	20.42	TRUE
102056	Calopteryx	aequabilis	pr	clim	5.03	20.42	TRUE
102058	Lestidae		pr	clim	9.00		FALSE
102059	Archilestes		pr	clim	7.00		FALSE
102061	Lestes		pr	clim	9.00		FALSE
102069	Lestes	inaequalis	pr	clim	9.00		FALSE
102077	Coenagrionidae		pr	clim	9.73	21.66	FALSE

TSN	Name1	Name2	FFG	Habit	MN Tolerance	Coldwater Tolerance	LongLived
102078	Ischnura		pr	clim	9.99	21.56	FALSE
102079	Ischnura	verticalis	pr	clim	9.99	21.56	FALSE
102082	Ischnura	posita	pr	clim	9.99	21.56	FALSE
102093	Amphiagrion		pr	clim	9.00		FALSE
102095	Amphiagrion	saucium	pr	clim	9.00		FALSE
102102	Enallagma		pr	clim	9.17	21.85	FALSE
102108	Enallagma	divagans	pr	clim	9.17	21.85	FALSE
102115	Enallagma	signatum	pr	clim	9.17	21.85	FALSE
102122	Enallagma	civile	pr	clim	9.17	21.85	FALSE
102124	Enallagma	cyathigerum	pr	clim	9.17	21.85	FALSE
102125	Enallagma	basidens	pr	clim	9.17	21.85	FALSE
102133	Chromagrion		pr	clim	2.12		FALSE
102134	Chromagrion	conditum	pr	clim	2.12		FALSE
102135	Nehalennia		pr	clim	7.00		FALSE
102139	Argia		pr	clim	10.00	21.30	FALSE
102140	Argia	apicalis	pr	clng	10.00	21.30	FALSE
102143	Argia	fumipennis	pr	clng	10.00	21.30	FALSE
102155	Coenagrion		pr	clim	8.00		FALSE
102467	Plecoptera		pr	clng	8.00		FALSE
102470	Pteronarcidae		sh	clng	5.83	18.98	TRUE
102471	Pteronarcys		sh	clng	5.83	18.98	TRUE
102517	Nemouridae		sh	clng	1.00		FALSE
102540	Amphinemura		sh	spra	3.00		FALSE
102556	Soyedina		sh	spra	0.00		FALSE
102567	Malenka		sh	spra			FALSE
102643	Capniidae		sh	spra	0.15	16.30	FALSE
102788	Taeniopterygidae		sh	spra	2.52	21.05	FALSE
102789	Taeniopteryx		sh	spra	2.67	21.56	FALSE
102804	Paracapnia		sh	spra	0.33		FALSE
102840	Leuctridae		sh	clng	0.02	18.56	FALSE
102844	Leuctra		sh	spra	0.00		FALSE
102887	Paraleuctra		sh	spra	0.00		FALSE
102914	Perlidae		pr	clng	2.88	20.09	TRUE
102917	Acroneuria		pr	clng	2.40	20.07	TRUE
102918	Acroneuria	lycorias	pr	clng	2.40	20.07	TRUE
102919	Acroneuria	abnormis	pr	clng	2.40	20.07	TRUE
102922	Acroneuria	carolinensis	pr	clng	2.40	20.07	TRUE
102942	Neoperla		pr	clng	2.02		FALSE
102945	Neoperla	stewarti	pr	clng	2.02		FALSE
102954	Attaneuria		pr	clng	1.00		TRUE
102955	Attaneuria	ruralis	pr	clng	1.00		TRUE

TSN	Name1	Name2	FFG	Habit	MN Tolerance	Coldwater Tolerance	LongLived
102962	Paragnetina		pr	clng	3.29	19.56	TRUE
102968	Paragnetina	media	pr	clng	3.29	19.56	TRUE
102975	Agnetina		pr	clng	4.24	21.40	TRUE
102979	Agnetina	capitata	pr	clng	4.24	21.40	TRUE
102994	Perlodidae		pr	clng	2.68	18.75	FALSE
102995	Isoperla		pr	clng	4.17	18.90	FALSE
103124	Isogenoides		pr	clng	0.00		FALSE
103202	Chloroperlidae		pr	clng	1.00		FALSE
103203	Alloperla		pr	clng	0.00		FALSE
103212	Alloperla	usa	pr	clng	0.00		FALSE
103244	Perlinella		pr	clng	1.00		FALSE
103246	Perlinella	dryma	pr	clng	1.00		FALSE
103251	Perlesta		pr	clng	6.81	19.76	FALSE
103273	Sweltsa		pr	clng	1.00		FALSE
103359	Hemiptera		pr	clim			FALSE
103364	Corixidae		pr	swim	8.68	21.38	FALSE
103369	Sigara		hb	swim	7.74	21.00	FALSE
103382	Sigara	grossolineata	hb	swim	7.74	21.00	FALSE
103402	Sigara	lineata	hb	swim	7.74	21.00	FALSE
103403	Sigara	trilineata	hb	swim	7.74	21.00	FALSE
103423	Trichocorixa		pr	swim	10.00	21.34	FALSE
103444	Hesperocorixa		hb	swim	4.53	21.42	FALSE
103460	Hesperocorixa	kennicotti	hb	swim	4.53	21.42	FALSE
103484	Corisella		pr	swim			FALSE
103491	Palmacorixa		pr	swim	9.48	22.66	FALSE
103501	Cenocorixa		pr	swim	8.00		FALSE
103514	Callicorixa		pr	swim	4.33		FALSE
103517	Callicorixa	audeni	pr	swim	4.33		FALSE
103525	Cymatia		pr	swim	9.00		FALSE
103526	Cymatia	americana	pr	swim	9.00		FALSE
103557	Notonectidae		pr	swim	6.57	21.40	FALSE
103558	Notonecta		pr	swim	6.77	21.22	FALSE
103583	Buenoa		pr	swim	7.00		FALSE
103602	Pleidae		pr	swim	8.90	21.83	FALSE
103603	Neoplea		pr	swim	8.92	21.85	FALSE
103604	Neoplea	striola	pr	swim	8.92	21.85	FALSE
103665	Pelocoris		pr	clim	7.00		FALSE
103683	Belostomatidae		pr	clim	9.33	20.96	FALSE
103684	Belostoma		pr	clim	9.34	20.96	FALSE
103689	Belostoma	flumineum	pr	clim	9.34	20.96	FALSE
103699	Lethocerus		pr	clim	6.87		TRUE

TSN	Name1	Name2	FFG	Habit	MN Tolerance	Coldwater Tolerance	LongLived
103709	Lethocerus	americanus	pr	clim	6.87		TRUE
103748	Ranatra		pr	clim	10.00	21.05	FALSE
103765	Nepa		pr	clim	7.00		FALSE
103766	Nepa	apiculata	pr	clim	7.00		FALSE
103801	Gerridae		pr	skat	7.26	19.44	FALSE
103802	Rheumatobates		pr	skat	6.02	19.71	FALSE
103811	Trepobates		pr	skat	8.00		FALSE
103829	Gerris		pr	skat	6.89	20.17	FALSE
103857	Metrobates		pr	skat	6.00		FALSE
103872	Limnoporus		pr	skat	5.41		FALSE
103882	Neogerris	hesione	pr	skat			FALSE
103885	Veliidae		pr	skat	5.68	20.15	FALSE
103886	Rhagovelia		pr	skat	4.79	20.92	FALSE
103900	Microvelia		pr	skat	3.90	20.31	FALSE
103939	Hydrometra		pr	skat			FALSE
103954	Mesovelia		pr	skat	9.29	20.83	FALSE
103964	Hebridae		pr	clim			FALSE
103983	Merragata		pr	skat			FALSE
103990	Macroveliidae		pr	clim			FALSE
104063	Saldidae		pr	clim	10.00		FALSE
104140	Saldula		pr	clim			FALSE
109191	Aphididae		hb				FALSE
109216	Coleoptera		pr				FALSE
111857	Haliplidae		hb	clng	8.52	20.87	FALSE
111858	Haliplus		sh	clim	8.66	20.80	FALSE
111883	Haliplus	immaculicollis	sh	swim	8.66	20.80	FALSE
111923	Peltodytes		sh	clim	8.02	21.10	FALSE
111963	Dytiscidae		pr	swim	7.70	21.13	FALSE
111966	Agabus		pr	swim	5.15	18.68	FALSE
112072	Agabetes		pr	swim			FALSE
112074	Acilius		pr	swim			FALSE
112086	Rhantus		pr	swim	5.00		FALSE
112109	Thermonectus		pr	swim	5.00		FALSE
112118	Dytiscus		pr	swim	5.00		FALSE
112145	Desmopachria		pr	swim	10.00	23.72	FALSE
112148	Desmopachria	convexa	pr	swim	10.00	23.72	FALSE
112165	Graphoderus		pr	swim			FALSE
112172	Hydaticus		pr	swim	5.00		FALSE
112181	llybius		pr	swim	5.08	18.79	FALSE
112200	Hygrotus		pr	swim	10.00	21.71	FALSE
112278	Laccophilus		pr	swim	8.88	24.08	FALSE

TSN	Name1	Name2	FFG	Habit	MN Tolerance	Coldwater Tolerance	LongLived
112314	Oreodytes		sh	swim	5.00		FALSE
112364	Cybister		pr	swim			FALSE
112371	Coptotomus		pr	swim	7.40	20.07	FALSE
112379	Colymbetes		pr	swim	5.00		FALSE
112390	Hydroporus		pr	swim	7.56	19.82	FALSE
112561	Copelatus		pr	swim	5.00		FALSE
112575	Uvarus		pr	swim	7.21		FALSE
112580	Liodessus		pr	swim	6.18	21.34	FALSE
112653	Gyrinidae		pr	swim	5.28	20.17	FALSE
112654	Gyrinus		pr	swim	5.31	19.98	FALSE
112711	Dineutus		pr	swim	5.00		FALSE
112756	Hydraenidae		pr	clng	5.06	20.15	FALSE
112757	Hydraena		pr	clng	4.41	20.03	FALSE
112777	Ochthebius		sc	clng	9.79	20.39	FALSE
112811	Hydrophilidae		pr	swim	8.50	20.62	FALSE
112812	Berosus		hb	swim	5.03	21.32	FALSE
112858	Laccobius		hb		3.88	20.32	FALSE
112878	Anacaena			burr	6.02	20.11	FALSE
112909	Paracymus		pr	clng	8.16	20.78	FALSE
112931	Sperchopsis		cg	clng	5.00		FALSE
112932	Sperchopsis	tessellata	cg	clng	6.00		FALSE
112938	Tropisternus		pr	clim	9.42	20.98	FALSE
112973	Enochrus		cg	burr	10.00	21.19	FALSE
113017	Cymbiodyta		cg	burr	5.00		FALSE
113106	Helophorus		sh	swim	10.00	19.93	FALSE
113148	Helocombus		cg	clng			FALSE
113150	Helochares		cg				FALSE
113166	Hydrochus		sh	clim	9.25	21.91	FALSE
113190	Hydrochara		cg	swim			FALSE
113196	Hydrobius		pr	clim	5.94	20.56	FALSE
113204	Hydrophilus		pr	swim			FALSE
113220	Crenitis		pr	burr	4.34	19.37	FALSE
113265	Staphylinidae		pr	clng	8.00		FALSE
113576	Stenus		pr	skat	8.00		FALSE
113835	Lampyridae				0.00		FALSE
113924	Scirtidae		sc	clim	8.52	21.66	FALSE
113929	Scirtes		sh	clim	8.22	21.44	FALSE
113948	Cyphon		sc	clim	9.97	21.63	FALSE
113999	Dryopidae		sc	clng	7.38	18.52	TRUE
114006	Helichus		sh	clng	7.38	18.53	TRUE
114069	Psephenidae		sc	clng	0.00	20.25	TRUE

TSN	Name1	Name2	FFG	Habit	MN Tolerance	Coldwater Tolerance	LongLived
114087	Ectopria		sc	clng	0.00	20.25	TRUE
114093	Elmidae		cg	clng	8.16	20.93	TRUE
114095	Stenelmis		sc	clng	8.30	21.83	TRUE
114102	Stenelmis	crenata	cg	clng	8.30	21.83	TRUE
114126	Dubiraphia		cg	clng	9.26	21.06	TRUE
114146	Microcylloepus		cg	clng	3.00		TRUE
114147	Microcylloepus	pusillus	cg	clng	3.00		TRUE
114177	Optioservus		sc	clng	3.08	19.22	TRUE
114190	Optioservus	fastiditus	sc	clng	3.08	19.22	TRUE
114194	Ancyronyx	variegatus	cg	clng	5.01	20.48	TRUE
114212	Macronychus		cg	clng	7.21	20.80	TRUE
114213	Macronychus	glabratus	cg	clng	7.21	20.80	TRUE
114509	Chrysomelidae		sh	clng	6.00		FALSE
114666	Curculionidae		sh	clng	6.00		FALSE
114690	Listronotus		sh	clng			FALSE
114838	Lixus		sh	clng			FALSE
114999	Neuroptera		pr				FALSE
115001	Sialidae		pr	burr	5.65	19.72	TRUE
115002	Sialis		pr	burr	5.65	19.72	TRUE
115023	Corydalidae		pr	clng	2.92	19.90	TRUE
115024	Chauliodes		pr	clng	5.80	20.11	TRUE
115028	Nigronia		pr	clng	0.41	19.47	TRUE
115033	Corydalus		pr	clng	6.00		TRUE
115085	Sisyridae		pr	clim	5.00		FALSE
115086	Climacia		pr	clim	8.00		FALSE
115087	Climacia	areolaris	pr		8.00		FALSE
115090	Sisyra		pr	clim			FALSE
115095	Trichoptera		un				FALSE
115097	Rhyacophila		pr	clng	0.00	16.70	FALSE
115099	Rhyacophila	angelita	pr		0.00	16.70	FALSE
115133	Rhyacophila	fuscula	cg	clng	0.00	16.70	FALSE
115147	Rhyacophila	minor	pr	clng	0.00	16.70	FALSE
115150	Rhyacophila	invaria	pr	clng	0.00	16.70	FALSE
115221	Protoptila		pr	clng	1.40	21.56	FALSE
115257	Philopotamidae		cf	clng	0.00	20.01	FALSE
115273	Chimarra		cf	clng	0.00	20.31	FALSE
115276	Chimarra	obscura	cf	clng	0.00	20.31	FALSE
115278	Chimarra	aterrima	cf	clng	0.00	20.31	FALSE
115279	Chimarra	socia	cf	clng	0.00	20.31	FALSE
115319	Dolophilodes		cf	clng	0.00	17.40	FALSE
115322	Dolophilodes	distinctus	cf	clng	0.00	17.40	FALSE

TSN	Name1	Name2	FFG	Habit	MN Tolerance	Coldwater Tolerance	LongLived
115334	Psychomyiidae		cg	clng	3.90	19.53	FALSE
115335	Psychomyia		cg	clng	4.14	20.33	FALSE
115341	Psychomyia	flavida	cg	clng	4.14	20.33	FALSE
115361	Phylocentropus		cf	clng	1.24		FALSE
115364	Phylocentropus	placidus	cf	clng	1.24		FALSE
115373	Cernotina		pr	clng	1.04	17.98	FALSE
115391	Lype		sc	burr	3.10	18.51	FALSE
115392	Lype	diversa	sc	spra	3.10	18.51	FALSE
115398	Hydropsychidae		cf	clng	7.55	20.26	FALSE
115399	Diplectrona		cf	clng	0.00		FALSE
115402	Diplectrona	modesta	cf	clng	0.00		FALSE
115408	Cheumatopsyche		cf	clng	8.05	20.59	FALSE
115453	Hydropsyche		cf	clng	7.81	21.21	FALSE
115454	Hydropsyche	betteni	cf	clng	7.81	21.21	FALSE
115458	Hydropsyche	bidens	cf	clng	7.81	21.21	FALSE
115461	Hydropsyche	cuanis	cf	clng	7.81	21.21	FALSE
115465	Hydropsyche	dicantha	cf	clng	7.81	21.21	FALSE
115468	Hydropsyche	frisoni	cf	clng	7.81	21.21	FALSE
115469	Hydropsyche	hageni	cf	clng	7.81	21.21	FALSE
115471	Hydropsyche	incommoda	cf	clng	7.81	21.21	FALSE
115477	Hydropsyche	phalerata	cf	clng	7.81	21.21	FALSE
115480	Hydropsyche	scalaris	cf	clng	7.81	21.21	FALSE
115481	Hydropsyche	simulans	cf	clng	7.81	21.21	FALSE
115482	Hydropsyche	valanis	cf	clng	7.81	21.21	FALSE
115487	Hydropsyche	placoda	cf	clng	7.81	21.21	FALSE
115551	Potamyia		cf	clng	8.53	22.07	FALSE
115552	Potamyia	flava	cf	clng	8.53	22.07	FALSE
115556	Parapsyche		cf	clng	1.00		FALSE
115557	Parapsyche	apicalis		clng			FALSE
115570	Ceratopsyche		cf	clng	6.61	19.32	FALSE
115571	Ceratopsyche	alternans	cf	clng	6.61	19.32	FALSE
115575	Ceratopsyche	vexa		clng	6.61	19.32	FALSE
115577	Ceratopsyche	bronta	cf	clng	6.61	19.32	FALSE
115580	Ceratopsyche	morosa	cf	clng	6.61	19.32	FALSE
115586	Ceratopsyche	slossonae	cf	clng	6.61	19.32	FALSE
115589	Ceratopsyche	sparna	cf	clng	6.61	19.32	FALSE
115592	Ceratopsyche	walkeri	cf	clng	6.61	19.32	FALSE
115596	Ceratopsyche	alhedra	cf	clng	6.61	19.32	FALSE
115603	Macrostemum		cf	clng	0.35	23.17	FALSE
115606	Macrostemum	zebratum	cf	clng	0.35	23.17	FALSE
115629	Hydroptilidae		hb	clim	6.47	20.69	FALSE

TSN	Name1	Name2	FFG	Habit	MN Tolerance	Coldwater Tolerance	LongLived
115630	Leucotrichia		sc	clng	0.75	21.48	FALSE
115631	Leucotrichia	pictipes	sc	clng	0.75	21.48	FALSE
115635	Agraylea		cf	clim	8.00		FALSE
115641	Hydroptila		hb	clng	7.58	20.65	FALSE
115714	Ochrotrichia		cg	clng	10.00	23.88	FALSE
115779	Oxyethira		cg	clim	1.37	20.50	FALSE
115811	Mayatrichia		sc	clng	7.97	22.89	FALSE
115812	Mayatrichia	ayama	sc	clng	7.97	22.89	FALSE
115817	Stactobiella		sh	clim	2.00		FALSE
115823	Ithytrichia		pr	clng			FALSE
115824	Ithytrichia	clavata	sc	clng			FALSE
115826	Dibusa		pr	clng	6.00		FALSE
115828	Orthotrichia		hb	clng	6.00		FALSE
115833	Neotrichia		sc	clng	9.00		FALSE
115867	Phryganeidae		sh	clim	3.93	19.98	FALSE
115868	Ptilostomis		sh	clng	4.40	19.50	FALSE
115882	Agrypnia		sh	clim			FALSE
115888	Fabria	inornatus					FALSE
115892	Phryganea		sh	clim	1.61	22.02	FALSE
115900	Oligostomis		pr	clim	2.00		FALSE
115911	Banksiola		sh	clim			FALSE
115933	Limnephilidae		sh	clim	3.45	19.19	FALSE
115934	Goeridae		SC	clng		17.03	FALSE
115935	Apatania		pr	clng	1.00		FALSE
115956	Anabolia		sh	spra			FALSE
115974	Psychoglypha		sh	spra	1.00		FALSE
115981	Psychoglypha	subborealis	cg	spra	2.00		FALSE
115989	Pseudostenophylax		sh	spra			FALSE
115995	Hydatophylax		sh	spra	2.63	19.44	FALSE
115997	Hydatophylax	argus	sh	spra	2.63	19.44	FALSE
116001	Hesperophylax		sh	spra	2.67	13.03	FALSE
116008	Hesperophylax	designatus		spra	2.67	13.03	FALSE
116030	Glyphopsyche		sh	clng	3.31	18.53	FALSE
116031	Glyphopsyche	irrorata		clng	3.31	18.53	FALSE
116046	Neophylax		sc	clng	3.15	19.76	FALSE
116047	Neophylax	concinnus	sc	clng	3.15	19.76	FALSE
116049	Neophylax	fuscus	sc	clng	3.15	19.76	FALSE
116050	Neophylax	mitchelli	sc	clng	3.15	19.76	FALSE
116053	Neophylax	aniqua	sc	clng	3.15	19.76	FALSE
116057	Neophylax	oligius	sc	clng	3.15	19.76	FALSE
116069	Limnephilus		sh	spra	3.71	17.32	FALSE

TSN	Name1	Name2	FFG	Habit	MN Tolerance	Coldwater Tolerance	LongLived
116221	Asynarchus			clim			FALSE
116304	Frenesia	missa					FALSE
116407	Platycentropus		sh	clim			FALSE
116409	Pycnopsyche		sh	spra	4.55	21.70	FALSE
116423	Goera		sc	clng	0.00		FALSE
116426	Goera	stylata	sc	clng	0.00		FALSE
116432	Nemotaulius		sh	spra	5.50	22.41	FALSE
116434	Nemotaulius	hostilis	sh	spra	5.50	22.41	FALSE
116473	Molannidae		sc	spra	1.81	20.04	FALSE
116474	Molanna		sc	spra	2.40	20.18	FALSE
116496	Odontoceridae		sc	spra	0.00		FALSE
116503	Psilotreta	indecisa					FALSE
116547	Leptoceridae		cg	clim	6.78	21.43	FALSE
116548	Setodes		cg	spra	0.13		FALSE
116565	Triaenodes		sh	swim	5.61	22.17	FALSE
116598	Mystacides		cg	spra	3.08	20.97	FALSE
116607	Oecetis		pr	clng	4.31	20.78	FALSE
116608	Oecetis	avara	pr	clng	4.31	20.78	FALSE
116609	Oecetis	cinerascens	pr		4.31	20.78	FALSE
116631	Oecetis	nocturna	pr	spra	4.31	20.78	FALSE
116636	Oecetis	persimilis	pr	swim	4.31	20.78	FALSE
116644	Oecetis	immobilis	pr		4.31	20.78	FALSE
116651	Nectopsyche		sh	clim	9.93	21.99	FALSE
116659	Nectopsyche	exquisita	sh	clim	9.93	21.99	FALSE
116661	Nectopsyche	candida	sh	clim	9.93	21.99	FALSE
116663	Nectopsyche	diarina	sh	clim	9.93	21.99	FALSE
116677	Leptocerus		sh	swim	4.00		FALSE
116678	Leptocerus	americanus	sh	swim	4.00		FALSE
116684	Ceraclea		cg	clng	2.45	20.30	FALSE
116793	Lepidostomatidae		sh	clim	0.12	18.43	FALSE
116794	Lepidostoma		sh	clim	0.12	18.42	FALSE
116905	Brachycentridae		cf	clng	4.68	18.04	FALSE
116906	Brachycentrus		cf	clng	5.14	17.78	FALSE
116910	Brachycentrus	numerosus	cf	clng	5.14	17.78	FALSE
116912	Brachycentrus	americanus	cf	clng	5.14	17.78	FALSE
116918	Brachycentrus	occidentalis	cf		5.14	17.78	FALSE
116958	Micrasema		sh	clng	0.67	18.83	FALSE
116961	Micrasema	rusticum	cg	clng	0.67	18.83	FALSE
116964	Micrasema	sprulesi	sh	clng	0.67	18.83	FALSE
116965	Micrasema	rickeri	cg	clng	0.67	18.83	FALSE
116969	Micrasema	gelidum	sh	clng	0.67	18.83	FALSE

TSN	Name1	Name2	FFG	Habit	MN Tolerance	Coldwater Tolerance	LongLived
116982	Sericostomatidae		sh	spra	0.00	20.50	FALSE
116983	Agarodes		sh	spra	0.00	19.73	FALSE
116984	Agarodes	distinctus	sh	spra	0.00	19.73	FALSE
117015	Helicopsychidae		sc	clng	2.69	20.78	FALSE
117016	Helicopsyche		sc	clng	2.61	20.78	FALSE
117020	Helicopsyche	borealis	sc	clng	2.61	20.78	FALSE
117043	Polycentropodidae		cf	clng	3.01	20.30	FALSE
117044	Polycentropus		pr	clng	3.20	20.45	FALSE
117091	Cyrnellus		cf	clng	8.00		FALSE
117092	Cyrnellus	fraternus	cf	clng	8.00		FALSE
117095	Neureclipsis		cf	clng	1.13	20.21	FALSE
117104	Nyctiophylax		pr	clng	4.38	21.53	FALSE
117120	Glossosomatidae		sc	clng	1.29	17.12	FALSE
117121	Agapetus		sc	clng	0.00		FALSE
117159	Glossosoma		sc	clng	1.14	17.12	FALSE
117162	Glossosoma	intermedium	sc	clng	1.14	17.12	FALSE
117164	Glossosoma	nigrior		clng	1.14	17.12	FALSE
117196	Glossosoma	lividum	sc	clng	1.14	17.12	FALSE
117232	Lepidoptera		sh		6.00		FALSE
117297	Arctiidae		sh		5.00		FALSE
117318	Noctuidae		sh	burr	6.00		FALSE
117641	Pyralidae		sh	spra	7.69	21.06	FALSE
117642	Paraponyx		sh	clng	1.54	20.51	FALSE
117654	Synclita		sh	clim			FALSE
117659	Nymphula		sh	clim			FALSE
117665	Elophila		sh				FALSE
117672	Munroessa		sh	clim	2.30		FALSE
117682	Petrophila		sc	clim	2.23	21.66	FALSE
117714	Parapoynx		sh	clim			FALSE
117741	Acentria		sh	clim	1.00		FALSE
118746	Nepticula		sh	burr			FALSE
118831	Diptera		un		7.00		FALSE
118840	Tipulidae		sh	burr	5.80	19.05	FALSE
118890	Holorusia		sh	burr			FALSE
119008	Prionocera		sh	burr	3.00		FALSE
119037	Tipula		sh	burr	6.29	20.09	FALSE
119654	Limoniinae		cg		5.00		FALSE
119656	Antocha		cg	clng	4.07	18.13	FALSE
119690	Helius		cg	burr	4.00		FALSE
119704	Limonia		sh	burr	6.87	18.27	FALSE
120094	Hexatoma		pr	burr	8.07	20.49	FALSE

TSN	Name1	Name2	FFG	Habit	MN Tolerance	Coldwater Tolerance	LongLived
120164	Limnophila		pr	burr	7.30	17.07	FALSE
120335	Pilaria		pr	burr	5.31	17.90	FALSE
120365	Pseudolimnophila		pr	burr	2.00		FALSE
120387	Ulomorpha			burr			FALSE
120488	Cryptolabis		sh	burr	3.00		FALSE
120503	Erioptera		cg	burr	5.08	17.74	FALSE
120640	Gonomyia		cg	burr	3.00		FALSE
120732	Hesperoconopa		cg	burr	1.00		FALSE
120830	Ormosia		cg	burr	6.50		FALSE
121027	Dicranota		pr	burr	3.98	18.31	FALSE
125351	Psychodidae		cg	burr	9.06	18.97	FALSE
125468	Psychoda		cg	burr	8.41	19.19	FALSE
125514	Pericoma		cg	burr	7.59	19.26	FALSE
125763	Ptychopteridae		cg	burr	4.51		FALSE
125765	Bittacomorpha		cg	burr	7.00		FALSE
125786	Ptychoptera		cg	burr	4.51		FALSE
125799	Tanyderidae		cg	spra	5.00		FALSE
125809	Dixidae		cg	swim	4.51	19.03	FALSE
125810	Dixa		cg	clim	5.20	17.82	FALSE
125854	Dixella		cg	swim	4.27	19.47	FALSE
125886	Chaoboridae		pr	spra	8.22	19.41	FALSE
125888	Eucorethra		pr	swim	7.00		FALSE
125893	Mochlonyx		pr				FALSE
125904	Chaoborus		pr	spra	8.45	19.37	FALSE
125930	Culicidae		cg	swim	7.96	20.69	FALSE
125956	Anopheles		cf	swim	8.06	20.57	FALSE
126234	Aedes		cf	swim	6.39	20.67	FALSE
126424	Coquillettidia		cf				FALSE
126429	Culiseta		cg	swim			FALSE
126455	Culex		cf	swim	8.22	22.23	FALSE
126575	Uranotaenia		cf	swim			FALSE
126580	Uranotaenia	sapphirina	cf				FALSE
126621	Ochlerotatus		cf				FALSE
126640	Simuliidae		cf	clng	6.38	18.79	FALSE
126648	Prosimuliini						FALSE
126774	Simulium		cf	clng	6.37	18.76	FALSE
126838	Simulium	luggeri	cf	clng	6.37	18.76	FALSE
126903	Simulium	vittatum	cf	clng	6.37	18.76	FALSE
127076	Ceratopogonidae		pr	spra	5.68	20.33	FALSE
127112	Forcipomyiinae		pr	spra	6.00	22.00	FALSE
127113	Atrichopogon		cg	clng	7.76	20.82	FALSE

TSN	Name1	Name2	FFG	Habit	MN Tolerance	Coldwater Tolerance	LongLived
127152	Forcipomyia		sc	burr	7.12	21.35	FALSE
127278	Dasyhelea		cg	spra	5.68	20.85	FALSE
127338	Ceratopogoninae		pr	burr	6.00	20.00	FALSE
127340	Culicoides		pr	burr	5.68	20.53	FALSE
127533	Alluaudomyia		pr	burr	6.00		FALSE
127564	Ceratopogon		pr	burr	6.12	18.35	FALSE
127575	Monohelea		pr	burr			FALSE
127614	Serromyia		pr	burr	5.90	20.50	FALSE
127619	Stilobezzia		pr	spra			FALSE
127649	Clinohelea		pr	burr			FALSE
127702	Mallochohelea		pr	burr	6.62	21.94	FALSE
127720	Nilobezzia		pr	burr	6.00		FALSE
127729	Probezzia		pr	burr	2.53	20.07	FALSE
127761	Sphaeromias		pr	burr	3.78	19.26	FALSE
127778	Bezzia		pr	spra	5.21	20.36	FALSE
127859	Palpomyia		pr	burr	6.00		FALSE
127917	Chironomidae		cg		7.80	20.14	FALSE
127962	Lasiodiamesa		cg,sc	spra			FALSE
127994	Tanypodinae		pr	burr	6.00	21.00	FALSE
127996	Clinotanypus		pr	burr	3.30	20.95	FALSE
128021	Apsectrotanypus		pr	burr	2.00		FALSE
128034	Macropelopia		pr	spra	7.00		FALSE
128037	Macropelopia	decedens	pr	spra	7.00		FALSE
128048	Psectrotanypus		pr	spra	8.10		FALSE
128070	Natarsia		pr	spra	2.84	19.91	FALSE
128079	Ablabesmyia		pr	spra	7.38	20.72	FALSE
128130	Conchapelopia		pr	spra	8.67	19.36	FALSE
128131	Helopelopia		pr	spra			FALSE
128161	Guttipelopia		pr	spra	2.94	18.01	FALSE
128170	Krenopelopia		pr	spra			FALSE
128173	Labrundinia		pr	spra	9.88	20.37	FALSE
128174	Labrundinia	becki	pr	spra	9.88	20.37	FALSE
128183	Larsia		pr	spra	7.69	21.98	FALSE
128202	Nilotanypus		pr	spra	5.63	20.98	FALSE
128207	Paramerina		pr	spra	7.35	19.21	FALSE
128215	Pentaneura		pr	spra	4.61	21.96	FALSE
128226	Rheopelopia		pr	spra	3.00		FALSE
128234	Telopelopia	okoboji	pr	burr			FALSE
128236	Thienemannimyia		pr	spra	5.91		FALSE
128245	Thienemannimyia	senata	pr	spra	5.91		FALSE
128249	Hayesomyia	sonata	pr	spra			FALSE

TSN	Name1	Name2	FFG	Habit	MN Tolerance	Coldwater Tolerance	LongLived
128251	Trissopelopia		pr	spra	0.19	17.10	FALSE
128252	Trissopelopia	ogemawi	pr	spra	0.19	17.10	FALSE
128259	Zavrelimyia		pr	spra	8.02	18.33	FALSE
128271	Djalmabatista		pr	spra	9.00		FALSE
128277	Procladius		pr	spra	7.49	20.66	FALSE
128324	Tanypus		pr	spra	10.00	23.83	FALSE
128341	Diamesinae		cg	spra	5.00		FALSE
128355	Diamesa		cg	spra	5.00		FALSE
128401	Pagastia		cg	spra	5.14	14.05	FALSE
128408	Potthastia		cg	spra	5.12	20.09	FALSE
128416	Pseudodiamesa		cg	spra			FALSE
128440	Monodiamesa		cg				FALSE
128446	Odontomesa		cg	spra	6.51	17.01	FALSE
128452	Prodiamesa		cg	spra	5.76	14.74	FALSE
128457	Orthocladiinae		cg	burr	5.00	20.00	FALSE
128463	Acricotopus		cg	spra	4.05	20.16	FALSE
128477	Brillia		sh	burr	8.01	18.62	FALSE
128511	Cardiocladius		pr	burr	2.69	22.12	FALSE
128520	Chaetocladius		cg	spra	6.00		FALSE
128563	Corynoneura		cg	spra	6.70	19.42	FALSE
128575	Cricotopus		sh	clng	8.52	20.11	FALSE
128583	Cricotopus	bicinctus	cg	burr	8.52	20.11	FALSE
128670	Diplocladius		cg	spra	8.87	22.89	FALSE
128671	Diplocladius	cultriger	cg	spra	8.87	22.89	FALSE
128680	Doncricotopus		cg	spra		17.78	FALSE
128681	Doncricotopus	bicaudatus	cg	spra		17.78	FALSE
128682	Epoicocladius		cg		9.87	24.35	FALSE
128689	Eukiefferiella		cg	spra	5.13	16.02	FALSE
128695	Eukiefferiella	devonica	cg	spra	5.13	16.02	FALSE
128707	Euryhapsis						FALSE
128718	Gymnometriocnemus		cg	burr			FALSE
128730	Heleniella		pr	spra	0.00	17.65	FALSE
128737	Heterotrissocladius		cg	spra	5.46	15.28	FALSE
128750	Hydrobaenus		sc	spra	8.98	20.69	FALSE
128771	Krenosmittia		cg	spra	0.00		FALSE
128776	Limnophyes		cg	spra	8.38	18.52	FALSE
128811	Lopescladius		cg	burr	0.00	20.12	FALSE
128821	Metriocnemus		cg	spra	4.52		FALSE
128844	Nanocladius		cg	spra	7.77	20.33	FALSE
128874	Orthocladius		cg	spra	7.31	19.13	FALSE
128877	Symposiocladius		pr	spra	6.00		FALSE

TSN	Name1	Name2	FFG	Habit	MN Tolerance	Coldwater Tolerance	LongLived
128878	Orthocladius	annectens	cg	spra	7.31	19.13	FALSE
128951	Parachaetocladius		cg	spra	7.00		FALSE
128956	Paracladius		cg	spra			FALSE
128962	Paracricotopus		cg	spra	10.00		FALSE
128968	Parakiefferiella		cg	spra	10.00	19.66	FALSE
128978	Parametriocnemus		cg	spra	5.15	18.38	FALSE
128989	Paraphaenocladius		cg	spra	9.34	18.57	FALSE
129018	Psectrocladius		cg	spra	2.60	19.59	FALSE
129052	Pseudorthocladius		cg	spra	0.00		FALSE
129071	Pseudosmittia		cg	spra	7.48	19.98	FALSE
129083	Psilometriocnemus		cg	spra			FALSE
129086	Rheocricotopus		cg	spra	6.64	20.35	FALSE
129107	Rheosmittia		cg	burr	0.00		FALSE
129110	Smittia		cg	burr	2.00		FALSE
129152	Stilocladius		cg	spra	4.72	20.55	FALSE
129161	Synorthocladius		cg	spra	0.29	20.32	FALSE
129182	Thienemanniella		cg	spra	7.95	19.60	FALSE
129197	Tvetenia		cg	spra	4.98	17.54	FALSE
129206	Unniella		cg	burr	0.66		FALSE
129209	Xylotopus	par	cg	burr	2.21	19.37	FALSE
129213	Zalutschia		sh	spra	7.00		FALSE
129228	Chironominae		cg	burr	7.00		FALSE
129229	Chironomini		cg	burr	6.00	21.00	FALSE
129236	Axarus		cg	spra	2.00		FALSE
129249	Chernovskiia		cg	spra	6.00		FALSE
129254	Chironomus		cg	burr	8.64	18.97	FALSE
129350	Cladopelma		cg	burr	7.08	22.80	FALSE
129368	Cryptochironomus		pr	spra	9.13	20.13	FALSE
129394	Cryptotendipes		cg	burr	8.01	20.76	FALSE
129421	Demicryptochironomus		cg	burr	1.96	19.01	FALSE
129428	Dicrotendipes		cg	burr	8.19	20.08	FALSE
129459	Einfeldia		cg	burr	9.00		FALSE
129470	Endochironomus		sh	clng	8.52	22.08	FALSE
129483	Glyptotendipes		sh	burr	9.07	23.13	FALSE
129516	Kloosia/Harnischia		cg	burr	8.00		FALSE
129520	Hyporhygma		cg	burr	0.00		FALSE
129521	Hyporhygma	quadripunctatus	cg	burr	0.00		FALSE
129522	Kiefferulus		cg	burr	10.00		FALSE
129525	Lauterborniella		cg	clng	0.00	20.67	FALSE
129526	Lauterborniella	agrayloides	cg	clng	0.00	20.67	FALSE
129532	Microchironomus		cg	burr	0.00		FALSE

TSN	Name1	Name2	FFG	Habit	MN Tolerance	Coldwater Tolerance	LongLived
129535	Microtendipes		cf	clng	4.70	19.71	FALSE
129548	Nilothauma		cg	burr	0.63	22.05	FALSE
129556	Omisus		cg		4.00		FALSE
129561	Pagastiella		cg	spra	0.00		FALSE
129564	Parachironomus		pr	spra	9.40	21.26	FALSE
129597	Paracladopelma		cg	spra	7.29	19.61	FALSE
129616	Paralauterborniella		cg	burr	7.62	19.10	FALSE
129619	Paralauterborniella	nigrohalterale	cg	burr	7.62	19.10	FALSE
129623	Paratendipes		cg	burr	8.47	20.02	FALSE
129637	Phaenopsectra		SC	clng	6.46	19.74	FALSE
129657	Polypedilum		sh	clim	8.57	20.78	FALSE
129730	Robackia		cg	burr	6.31		FALSE
129735	Saetheria		cg	burr	10.00	20.27	FALSE
129746	Stenochironomus		cg	burr	6.49	21.02	FALSE
129785	Stictochironomus		cg	burr	10.00	19.41	FALSE
129820	Tribelos		cg	burr	2.45	19.88	FALSE
129837	Xenochironomus		pr	burr	4.26	20.34	FALSE
129838	Xenochironomus	xenolabis	pr	burr		20.34	FALSE
129850	Pseudochironomini		cg				FALSE
129851	Pseudochironomus		cg	burr	3.10	21.54	FALSE
129872	Tanytarsini		cf	burr	6.00	20.00	FALSE
129873	Cladotanytarsus		cg	clim	8.04	20.99	FALSE
129884	Constempellina		cg	clim	5.51		FALSE
129890	Micropsectra		cg	clim	7.75	17.99	FALSE
129935	Paratanytarsus		cg	clng	8.98	20.55	FALSE
129952	Rheotanytarsus		cf	clng	6.21	20.22	FALSE
129962	Stempellina		cg	clim	0.35	18.90	FALSE
129969	Stempellinella		cg	clim	2.24	20.07	FALSE
129975	Sublettea		cg	spra	6.98	19.74	FALSE
129976	Sublettea	coffmani	cg	spra	6.98	19.74	FALSE
129978	Tanytarsus		cf	clng	5.04	20.30	FALSE
130038	Zavrelia		cg	swim	6.00		FALSE
130040	Zavreliella		cg	burr	5.45	25.21	FALSE
130042	Neozavrelia						FALSE
130046	Endotribelos		cg	burr	2.84	21.24	FALSE
130150	Stratiomyidae		cg	spra	10.00	21.47	FALSE
130160	Allognosta		cg	spra			FALSE
130409	Caloparyphus		cg	spra	7.00		FALSE
130436	Euparyphus		cg	spra	8.00		FALSE
130461	Oxycera		sc	spra			FALSE
130573	Odontomyia		cg	spra	10.00	21.75	FALSE

TSN	Name1	Name2	FFG	Habit	MN Tolerance	Coldwater Tolerance	LongLived
130627	Stratiomys		cg	spra			FALSE
130694	Nemotelus		cg	spra	4.00		FALSE
130929	Atherix		pr	spra	3.73	20.33	FALSE
130932	Atherix	variegata	pr	spra	3.73	20.33	FALSE
130934	Tabanidae		pr	spra	5.91	19.95	FALSE
131078	Chrysops		pr	spra	5.15	19.76	FALSE
131321	Hybomitra		pr	spra	7.00		FALSE
131527	Tabanus		pr	spra	5.00		FALSE
135830	Empididae		pr	spra	5.61	20.25	FALSE
135844	Clinocerinae		pr	clng			FALSE
135849	Clinocera		pr	clng	2.99		FALSE
135871	Dolichocephala		pr	clng			FALSE
135893	Roederiodes		pr	clng			FALSE
135903	Trichoclinocera		pr	clng			FALSE
135920	Wiedemannia		pr	clng			FALSE
136290	Hemerodromiinae		pr	spra			FALSE
136305	Chelifera		cg	spra	6.67	17.75	FALSE
136327	Hemerodromia		pr	spra	5.38	20.53	FALSE
136352	Neoplasta		pr	spra	7.11	18.95	FALSE
136377	Oreogeton		pr	spra			FALSE
136824	Dolichopodidae		pr	burr	1.04	21.30	FALSE
138921	Phoridae		cg	burr	6.00		FALSE
139621	Syrphidae		cg	burr	10.00		FALSE
140904	Eristalis		cg	burr	10.00		FALSE
144653	Sciomyzidae		pr	burr	9.85	19.66	FALSE
144898	Sepedon		pr	burr			FALSE
146893	Ephydridae		cg	burr	9.46	19.84	FALSE
147117	Hydrellia		cg	burr			FALSE
150025	Muscidae		pr	spra	7.72	22.13	FALSE
150730	Limnophora		pr	burr	6.00		FALSE
152741	Hymenoptera		pr		8.00		FALSE
185976	Serratella	serrata	cg	clng	0.56	18.97	FALSE
185979	Aeshna	interrupta	pr	clim	7.99	19.17	TRUE
185987	Epitheca	spinigera	pr	clim			TRUE
186372	Deronectes	griseostriatus	pr				FALSE
189328	Zavreliella	marmorata	cg	burr		25.21	FALSE
193637	Gymnochthebius				2.98	21.34	FALSE
204785	Fridericia		cg	burr	6.00		FALSE
206620	Acerpenna	рудтаеа	cg	swim	2.68	20.86	FALSE
206622	Procloeon		cg	swim	3.80	21.09	FALSE
206655	Apedilum		cg		6.00		FALSE

TSN	Name1	Name2	FFG	Habit	MN Tolerance	Coldwater Tolerance	LongLived
563956	Nemata						FALSE
568515	Cricotopus (Isocladius)		sh	clng	7.00		FALSE
568523	Orthocladius (Symposiocladius)		cg	spra			FALSE
568545	Leptohyphidae		cg	·			FALSE
568546	Acerpenna		cg	swim	2.68	20.86	FALSE
568550	Diphetor		cg	clim			FALSE
568551	Fallceon		sh	swim	10.00	22.54	FALSE
568552	Labiobaetis		cg	swim	6.00		FALSE
568553	Plauditus			swim	4.67	21.50	FALSE
568554	Pseudocentroptiloides		cg	clng			FALSE
568556	Cercobrachys		cg	spra			FALSE
568559	Anthopotamus		cg	burr	8.95	22.27	FALSE
568560	Barbaetis		cg	clng	7.47		FALSE
568574	Acentrella	turbida	cg	swim		20.96	FALSE
568598	Diphetor	hageni	cg	clim			FALSE
568601	Fallceon	quilleri	sh	swim		22.54	FALSE
568604	Labiobaetis	dardanus	cg	swim	6.00		FALSE
568605	Labiobaetis	propinquus	cg	swim	6.00		FALSE
568623	Amercaenis	ridens	cg	spra			FALSE
568627	Caenis	youngi	cg	spra		21.47	FALSE
568668	Labiobaetis	frondalis	cg	swim	6.00		FALSE
568671	Acerpenna	macdunnoughi	sh	swim	2.68	20.86	FALSE
568680	Pseudocloeon	dardanum	sc	swim		20.55	FALSE
568681	Pseudocloeon	propinquum	sc	swim		20.55	FALSE
568685	Leptophlebia	bradleyi	cg	swim		20.40	FALSE
568757	Uenoidae		sc	clng	0.00		FALSE
568817	Ceratopsyche	ventura	cf	clng	6.61	19.32	FALSE
568826	Stictotarsus		pr				FALSE
568954	Desserobdella	picta	pr	clim			FALSE
591727	Macromiinae		pr	spra			TRUE
592856	Gomphus	fraternus	pr	burr	6.00	21.09	TRUE
598162	Limnephiloidea						FALSE
598372	Ylodes		sh	swim			FALSE
603100	Oecetis	furva	pr		4.31	20.78	FALSE
603269	Oecetis	testacea	pr		4.31	20.78	FALSE
609530	Acentrella	parvula	cg	swim		20.96	FALSE
609583	Pseudocentroptiloides	usa	cg	clng			FALSE
609591	Cercobrachys	etowah	cg	spra			FALSE
609660	Anthopotamus	myops	cf	burr	8.95	22.27	FALSE
609662	Anthopotamus	verticis	cf	burr	8.95	22.27	FALSE

TSN	Name1	Name2	FFG	Habit	MN Tolerance	Coldwater Tolerance	LongLived
678385	Sphaeriusidae		hb				FALSE
678801	Donaciinae		sh	clng	6.00		FALSE
678851	Dytiscinae		pr	swim			FALSE
693963	Crambidae		sh		6.87	23.47	FALSE
697957	Maccaffertium		sc	clng	6.77	21.48	FALSE
698057	Labiobaetis	longipalpus	cg	swim	6.00		FALSE
698216	Maccaffertium	exiguum	sc	clng	6.77	21.48	FALSE
698222	Maccaffertium	luteum	sc	clng	6.77	21.48	FALSE
698232	Maccaffertium	modestum	sc	clng	6.77	21.48	FALSE
698241	Maccaffertium	pulchellum	sc	clng	6.77	21.48	FALSE
698255	Maccaffertium	vicarium	sc	clng	6.77	21.48	FALSE
698469	Maccaffertium	mediopunctatum	sc	clng	6.77	21.48	FALSE
698470	Maccaffertium	mexicanum	sc	clng	6.77	21.48	FALSE
698471	Maccaffertium	terminatum	sc	clng	6.77	21.48	FALSE
698515	Maccaffertium	integrum	sc	clng	6.77	21.48	FALSE
717547	Aquarius		pr	skat			FALSE
722295	Sperchopsis	tessellata					FALSE
728212	Agabinae		pr	swim			FALSE
728241	Platambus		pr	swim			FALSE
728249	Heterosternuta		pr	swim	7.82	20.13	FALSE
728251	Nebrioporus		pr	swim			FALSE
728252	Neoporus		pr	swim	10.00	20.50	FALSE
728253	Sanfilippodytes		pr	swim			FALSE
733321	Acari		pr	clng	7.00		FALSE
776922	Sparbarus		cg	spra			FALSE
776928	Iswaeon					21.29	FALSE
776935	Acentrella	nadineae	cg	swim		20.96	FALSE
776969	Sparbarus	maculatus	cg	spra			FALSE
776981	Teloganopsis	deficiens	cg	clng	3.00		FALSE
914204	Trepaxonemata						FALSE
974284	Naidinae		cg	burr	6.00		FALSE
974289	Tubificinae		cg	burr			FALSE

Appendix E: Taxonomic targets

The taxonomic targets vary by group depending on the feasibility and need for finer taxonomic resolution. There are two target levels currently used by the MPCA. The "IBI Taxonomic Target" is the taxonomic resolution needed for calculating the IBIs described in this document. The second is the "Current Taxonomic Target" and the taxonomic resolution currently used by the MPCA. Although not required for the IBIs in this document, subsequent revisions to the IBI models may require this finer taxonomic resolution. In addition, the finer resolution of the "Current Taxonomic Target" can be useful for other efforts such as stressor identification and thermal condition reviews.

Classification Group	Order	IBI Taxonomic Target	Current Taxonomic Target
Bivalvia		Genus	Genus
Gastropoda		Genus	Genus
Hydrozoa		Class	Class
Oligochaeta		Class	Family
Crustacea	Amphipoda	Genus	Genus
Branchiobdellida	Branchiobdellida	Order	Order
Coleoptera	Coleoptera	Genus	Genus
Crustacea	Decapoda	Genus	Genus
Insecta	Diptera	Genus	Genus
Insecta	Ephemeroptera	Genus	Species
Insecta	Hemiptera	Genus	Genus
Insecta	Hymenoptera	Genus	Genus
Isopoda	Isopoda	Genus	Genus
Insecta	Lepidoptera	Genus	Genus
Insecta	Neuroptera	Genus	Genus
Insecta	Odonata	Genus	Species
Insecta	Plecoptera	Genus	Species
Insecta	Trichoptera	Genus	Species
Nematoda		Phylum	Phylum
Nematomorpha		Phylum	Phylum
Acari		Subclass	Subclass
Hirudinea		Genus	Genus
Trepaxonemata		Class	Class

Appendix F: Macroinvertebrate IBI metric information

Table E1 – Metric information for Large River MIBI, stream types 1 and 2.

						Drainage		FI
Metric Name	Metric Type	Target Group	Metric Calculation Description	Response	Transformation	Correction	Ceiling	Floor
Percent (%) Dominant Five Taxa	Relative Adundance	5 most abundant taxa	Relative abundance (%) of dominant five taxa in subsample (Chironomid genera treated individually)	increase	none	none	41.7	82.3
Hilsenhoff Biotic Index, MN TVs	Biotic Index	MN Tolerance, All Taxa	Abundance weighted average of each taxon using MN derived tolerance values.	increase	none	none	5.5	8.3
Intolerant Taxa	Richness	MN Tolerance <=4	Taxa richness of countable macroinvertebrates with tolerance values less than or equal to 4, using MN derived tolerance values	decrease	none	none	18.2	0
Odonata Taxa	Richness	Odonata Taxa	Taxa richness of countable Odonata taxa	decrease	none	none	5	0
Predator Taxa	Richness	FFG = Predator	Taxa richness of countable predator taxa	decrease	none	none	18.3	3.5
Total Taxa	Richness	All Taxa	Total taxa richness of all countable macroinvertebrates	decrease	none	none	57.6	24
Percent (%) Trichoptera- Hydropsychidae	Relative Adundance	Trichoptera, excluding Hydropsychidae	Relative abundance (%) of non-Hydropsychidae Trichoptera individuals in subsample	decrease	log10(x+1)	none	22.8	0
Percent (%) VeryTolerant	Relative Adundance	MN Tolerance >=8	Relative abundance (%) of macroinvertebrate individuals in subsample with tolerance values equal to or greater than 8, using MN derived tolerance values	increase	none	none	12.8	78.7

Table E2 – Metric Information for High Gradient Stream MIBI, stream types 3 and 5.

						Drainage		
Metric Name	Metric Type	Target Group	Metric Calculation Desctiption	Response	Transformation	Correction	Ceiling	Floor
Climber Taxa	Richness	Habitat = Climber	Taxa richness of countable climber taxa	decrease	none	none	12.0	2.7
Clinger Taxa %	Relative Richnes	Habitat = Clinger	Relative percentage of countable taxa adapted to cling to substrates in swift flowing water	decrease	none	none	46.0	20.0
Percent (%) Dominant Five Taxa	Relative Adundance	5 most abundant taxa	Relative abundance (%) of dominant five taxa in subsample (chironomid genera treated individually)	Increase	none	none	38.2	78.2
Hilsenhoff Biotic Index, MN TVs	Biotic Index	MN Tolerant, All Taxa	Abundance weighted average of each taxon using MN derived tolerance values. Only count taxa with a TV.	Increase	none	none	4.9	8.3
Insect Taxa %	Relative Richnes	Insect Taxa	Relative percentage of insect taxa	decrease	arcsin(sqrt(x))*	none	93.6	72.5
Odonata Taxa	Richness	Odonata Taxa	Taxa richness of countable Odonata taxa	decrease	log10(x+1)	none	5.0	0.0
Plecopotera Taxa	Richness	Plecoptera Taxa	Taxa richness of countable Plecoptera taxa	decrease	log10(x+1)	none	3.0	0.0
Predator Taxa Richness (excludes genus level Chironomidae)	Richness	FFG = Predator	Taxa richness of countable predator taxa (excluding Chironomidae predator taxa at the genus level)	decrease	none	none	16.0	3.0
Tolerant %	Relative Richnes	MN Tolerance >=6	Relative richness of macroinvertebrate indivduals in subsample with tolerance values equal to or greater than 6, using MN derived tolerance values.	Increase	none	none	93.7	47.1
Trichoptera Taxa	Richness	Trichoptera Taxa	Taxa richness of countable Trichoptera taxa	decrease	none	none	12.0	2.0

^{*}Value of x must range from 0 to 1

Table E3 – Metric information for Low Gradient Stream MIBI, stream types 4, 6, and 7.

						Drainage		
Metric Name	Metric Type	Target Group	Metric Description	Response	Transformation	Correction	Ceiling	Floor
Clinger Taxa	Richness	Habitat = Clinger	Taxa richness of countable clinger taxa	Decrease	none	none	17.0	2.0
Percent (%) Collector-filterers	Relative Abudance	FFG = Filterer	Relative abundance (%) of collector-filterer individuals	Decrease	none	none	37.9	0.3
Percent (%) Dominant Five Taxa	Relative Abudance	5 most abundant taxa	Relative abundance (%) of dominant five taxa in subsample (chironomid genera treated individually)	Increase	none	none	43.2	90.8
Hilsenhoff Biotic Index, MN Tvs	Biotic Index	MN Tolerant, All Taxa	Abundance weighted average of each taxon using MN derived tolerance values	Increase	none	none	5.8	8.9
Very Intolerant Taxa Richness	Richness	MN Tolerance <=2	Taxa richness of countable macroinvertebrates with tolerance values less than or equal to 2, using MN TVs	Decrease	log10(x+1)	none	3.0	0.0
POET Taxa	Richness	Plecoptera, Odonata, Ephemeroptera, Trichoptera Taxa	Combined richness of countable taxa within the orders Plecoptera, Odonata, Ephemeroptera, & Trichoptera, with all Baetid taxa treated as the family level	Decrease	none	none	16.0	2.0
Predator Taxa	Richness	FFG = Predator	Taxa richness of countable predator taxa	Decrease	none	none	18.0	4.0
Таха Таха	Richness	All Taxa	Total taxa richness of all countable macroinvertebrates	Decrease	none	none	53.0	19.0
Trichoptera %	Relative Richness	Trichoptera Taxa	Relative richness of countable Trichoptera taxa	Decrease	none	none	16.4	0.0
Percent (%) Trichoptera- Hydropsychidae	Relative Abundanc	Trichoptera, excluding Hydropsychidae	Relative abundance (%) of non-hydropsychid Trichoptera individuals in subsample	Decrease	log10(x+1)*	none	10.8	0.0

Table E4 – Metric Information for Northern Coldwater Stream MIBI, stream type 8.

						Drainage		
Metric Name	Metric Type	Target Group	Metric Description	Response	Transformation	Correction	Ceiling	Floor
Collector-Gatherer Taxa %	Relative Richness	FFG = Gatherer	Relative richness of countable collector-gatherer taxa	Increase	none	none	22.1	41.90
Hilsenhoff Biotic Index, MN TVs	Biotic Index	MN Tolerance, all taxa	Abundance weighted average of each taxon using MN derived tolerance values.	Increase	none	none	4.22	7.03
Very Intolerant Taxa Richness	Richness	MN Tolerance <=2	Taxa richness of countable macroinvertebrates with tolerance values less than or equal to 2, Using MN TVs	Decrease	none	none	12	0.00
Long-lived Taxa %	Relative Richness	LongLived = True	Relative richness of countable long-lived taxa	Decrease	none	none	26	6.00
Non-insect Taxa %	Relative Richness	Non-insect taxa	Relative richness of countable non-insect taxa	Increase	none	none	2.47	20.79
Odonata Taxa %	Relative Richness	Odonata Taxa	Relative richness of countable odonata taxa	Decrease	none	none	9.5	0.00
POET Taxa	Richness	Plecoptera, Odonata, Ephemeroptera, and Trichoptera	Combined richness of countable taxa within the orders Plecoptera, Odonata, Ephemeroptera, & Trichoptera, with all Baetidae taxa treated at the family level	Decrease	none	none	29	8.00
Predator Taxa Richness (excludes genus level Chironomidae)	Richness	FFG = Predator	Taxa richness of countable predator taxa (excluding Chironomidae predator taxa at the genus level)	Decrease	none	none	16	5.00
Very Tolerant Taxa %	Relative Richness	MN Tolerance >=8	Relative richness of countable taxa with tolerance values equal to or greater than 8, using MN TVs.	Increase	none	none	9.2	32.50

Table E5 – Metric Information for Southern Coldwater Stream MIBI, stream type 9.

Mahria Nama	Matria Tura	Towart Crown	Matria Description	Doonous Tr		Drainage	Cailing	Floor
Metric Name	wethe type	Target Group	Metric Description	kesponse n	ansformation	Correction	Ceiling	Floor
Coldwater Biotic Index	Biotic Index	CW Tolerance	Coldwater Biotic Index score based on coldwater tolerance values derived from Minnesota taxa/temperature data.	increase	none	slope = 0.579 constant = 17.923	-0.69	1.41
Chiro:Diptera	Ratio	Diptera taxa	Ratio of Chironomidae abundance to total Dipteran abundance.	increase	none	slope = 9.428 constant = 45.12	-40.33	37.59
Percent (%) Collector – Filterers	Relative Abundance	FFG = filterers	Relative abundance (%) of collector-filterer individuals in a subsample	decrease	none	none	53.41	7.36
Hilsenhoff Biotic Index, MN TVs	Biotic Index	MN Tolerance, all taxa	Abundance weighted average of each taxon using MN derived tolerance values.	increase	none	slope = 0.375 constant = 6.046	-0.58	1.04
Very intolerant Taxa Richness	Richness	MN Tolerance <=2	Taxa richness of macroinvertebrates with tolerance values less than or equal to 2, using MN TVs	decrease	none	none	3	0.00
Trichoptera Taxa %	Relative Richness	Trichoptera Taxa	Relative richness of countable trichoptera taxa	Decrease	none	none	23.74	6.27
Percent (%) Very Tolerant	Relative Abundance	MN Tolerance >=8	Relative abundance (%) of macroinvertebrate individuals in subsample with tolerance values equal to or greater than 8, using MN TVs.	increase	none	slope = 4.239 constant = 7.249	-10.28	35.77